llama-stack-mirror/source/api_definitions.py
Raghotham Murthy f431c18efc added more docs
2024-07-11 01:32:17 -07:00

581 lines
15 KiB
Python

from dataclasses import dataclass, field
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Optional, Protocol, Set, Tuple, Union
import yaml
from agentic_system_types import (
AgenticSystemTurn,
ExecutionStepType,
MemoryBank,
MemoryBankDocument,
SafetyViolation,
)
from model_types import (
BuiltinTool,
Content,
Dialog,
InstructModel,
Message,
PretrainedModel,
RewardModel,
SamplingParams,
ShieldConfig,
StopReason,
ToolCall,
ToolDefinition,
ToolResponse,
URL,
)
from post_training_types import (
Checkpoint,
Dataset,
DoraFinetuningConfig,
DPOAlignmentConfig,
FinetuningAlgorithm,
LoraFinetuningConfig,
OptimizerConfig,
PostTrainingJobLogStream,
PostTrainingJobStatus,
QLoraFinetuningConfig,
RLHFAlgorithm,
TrainingConfig,
)
from pyopenapi import Info, Options, Server, Specification, webmethod
from strong_typing.schema import json_schema_type
@json_schema_type
@dataclass
class CompletionRequest:
content: Content
model: PretrainedModel
sampling_params: SamplingParams = SamplingParams()
max_tokens: int = 0
stream: bool = False
logprobs: bool = False
@json_schema_type
@dataclass
class CompletionResponse:
"""Normal completion response."""
content: Content
stop_reason: Optional[StopReason] = None
logprobs: Optional[Dict[str, Any]] = None
@json_schema_type
@dataclass
class CompletionResponseStreamChunk:
"""streamed completion response."""
text_delta: str
stop_reason: Optional[StopReason] = None
logprobs: Optional[Dict[str, Any]] = None
@json_schema_type
@dataclass
class ChatCompletionRequest:
model: InstructModel
dialog: Dialog
sampling_params: SamplingParams = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: List[ToolDefinition] = field(default_factory=list)
max_tokens: int = 0
stream: bool = False
logprobs: bool = False
@json_schema_type
@dataclass
class ChatCompletionResponse:
"""Normal chat completion response."""
content: Content
# note: multiple tool calls can be generated in a single response
tool_calls: List[ToolCall] = field(default_factory=list)
stop_reason: Optional[StopReason] = None
logprobs: Optional[Dict[str, Any]] = None
@json_schema_type
@dataclass
class ChatCompletionResponseStreamChunk:
"""Streamed chat completion response. The actual response is a series of such objects."""
text_delta: str
stop_reason: Optional[StopReason] = None
tool_call: Optional[ToolCall] = None
@json_schema_type
@dataclass
class BatchCompletionRequest:
model: PretrainedModel
content_batch: List[Content]
sampling_params: SamplingParams = SamplingParams()
max_tokens: int = 0
logprobs: bool = False
@json_schema_type
@dataclass
class BatchChatCompletionRequest:
model: InstructModel
batch_dialogs: List[Dialog]
sampling_params: SamplingParams = SamplingParams()
# zero-shot tool definitions as input to the model
available_tools: List[ToolDefinition] = field(default_factory=list)
max_tokens: int = 0
logprobs: bool = False
class Inference(Protocol):
"""Set of methods that can be called on the inference service."""
def post_completion(
self,
request: CompletionRequest,
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ...
def post_chat_completion(
self,
request: ChatCompletionRequest,
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
def post_batch_completion(
self,
request: BatchCompletionRequest,
) -> List[CompletionResponse]: ...
def post_batch_chat_completion(
self,
request: BatchChatCompletionRequest,
) -> List[ChatCompletionResponse]: ...
@dataclass
class AgenticSystemCreateRequest:
uuid: str
instructions: str
model: InstructModel
# zero-shot or built-in tool configurations as input to the model
available_tools: List[ToolDefinition] = field(default_factory=list)
# tools which aren't executable are emitted as tool calls which the users can
# execute themselves.
executable_tools: Set[str] = field(default_factory=set)
memory_bank_uuids: List[str] = field(default_factory=list)
input_shields: List[ShieldConfig] = field(default_factory=list)
output_shields: List[ShieldConfig] = field(default_factory=list)
@json_schema_type
@dataclass
class AgenticSystemCreateResponse:
agent_uuid: str
@json_schema_type
@dataclass
class AgenticSystemExecuteRequest:
agent_uuid: str
messages: List[Message]
turn_history: List[AgenticSystemTurn] = None
stream: bool = False
@json_schema_type
@dataclass
class AgenticSystemExecuteResponse:
"""non-stream response from the agentic system."""
turn: AgenticSystemTurn
class AgenticSystemExecuteResponseEventType(Enum):
"""The type of event."""
step_start = "step_start"
step_end = "step_end"
step_progress = "step_progress"
@json_schema_type
@dataclass
class AgenticSystemExecuteResponseStreamChunk:
"""Streamed agent execution response."""
event_type: AgenticSystemExecuteResponseEventType
step_uuid: str
step_type: ExecutionStepType
# TODO(ashwin): maybe add more structure here and do this as a proper tagged union
violation: Optional[SafetyViolation] = None
tool_call: Optional[ToolCall] = None
tool_response_delta: Optional[ToolResponse] = None
response_text_delta: Optional[str] = None
retrieved_document: Optional[MemoryBankDocument] = None
stop_reason: Optional[StopReason] = None
class AgenticSystem(Protocol):
"""The Llama 3 models released by Meta in July should not just be seen as a model,
but really as a system starting the transition towards an entity capable of performing
"agentic" tasks. By that we mean the following specific capabilities:
1. Ability to act as the central planner -- break a task down and perform multi-step reasoning.
2. Ability to perceive multimodal inputs -- text, images, files and eventually speech and video in later iterations.
3. Ability to use tools -
a. built-in: the model has built-in knowledge of tools like search or code interpreter
b. zero-shot: the model can learn to call tools using previously unseen, in-context tool definitions
Multi-step tool-use concretely helps address many common problems with LLMs that users may
face:
1. Finding accurate and up-to-date information. LLMs are limited to training data and knowledge cut off date.
2. Current LLMs are limited in their understanding and reasoning abilities for solving more complex math problems, processing and analyzing data. Tools like code-execution or APIs like Wolfram can help bridge the gap.
3. Users may need help with a task that requires multiple tools to execute or a task that has multiple steps (e.g., graph plotting, etc.)
4. Our current LLMs are not able to generate other modalities (images, voice, video) directly.
Finally, we want the underlying LLM to remain broadly steerable and adaptable to use cases which
need varying levels of safety protection. To enable this, we want to shift safety into a two-tiered
system:
1. a set of "always on" safety checks are always performed at the model level, and
2. a set of configurable safety checks which can be run at the overall system level.
"""
@webmethod(route="/agentic_system/create")
def create_agentic_system(
self,
request: AgenticSystemCreateRequest,
) -> AgenticSystemCreateResponse: ...
@webmethod(route="/agentic_system/execute")
def create_agentic_system_execute(
self,
request: AgenticSystemExecuteRequest,
) -> Union[
AgenticSystemExecuteResponse, AgenticSystemExecuteResponseStreamChunk
]: ...
@webmethod(route="/agentic_system/delete")
def delete_agentic_system(
self,
agent_id: str,
) -> None: ...
class MemoryBanks(Protocol):
@webmethod(route="/memory_banks/create")
def create_memory_bank(
self,
bank_uuid: str,
bank_name: str,
documents: List[MemoryBankDocument],
) -> None: ...
@webmethod(route="/memory_banks/get")
def get_memory_banks(
self
) -> List[MemoryBank]: ...
@webmethod(route="/memory_banks/drop")
def remove_memory_bank(
self,
bank_uuid: str,
) -> None: ...
@webmethod(route="/memory_bank/insert")
def post_insert_memory_documents(
self,
bank_uuid: str,
documents: List[MemoryBankDocument],
) -> None: ...
@webmethod(route="/memory_bank/update")
def post_update_memory_documents(
self,
bank_uuid: str,
documents: List[MemoryBankDocument],
) -> None: ...
@webmethod(route="/memory_bank/get")
def post_get_memory_documents(
self,
bank_uuid: str,
document_uuids: List[str],
) -> List[MemoryBankDocument]: ...
@webmethod(route="/memory_bank/delete")
def remove_memory_documents(
self,
bank_uuid: str,
document_uuids: List[str],
) -> None: ...
@dataclass
class KPromptGenerations:
dialog: Dialog
k_generations: List[Message]
@json_schema_type
@dataclass
class ScoredMessage:
message: Message
score: float
@json_schema_type
@dataclass
class KScoredPromptGenerations:
prompt: Message
k_scored_generations: List[ScoredMessage]
@json_schema_type
@dataclass
class RewardScoringRequest:
"""Request to score a reward function. A list of prompts and a list of responses per prompt."""
prompt_generations: List[KPromptGenerations]
model: RewardModel
@json_schema_type
@dataclass
class RewardScoringResponse:
"""Response from the reward scoring. Batch of (prompt, response, score) tuples that pass the threshold."""
scored_generations: List[KScoredPromptGenerations]
class RewardScoring(Protocol):
@webmethod(route="/reward_scoring/score")
def post_score(
self,
request: RewardScoringRequest,
) -> Union[RewardScoringResponse]: ...
class FilteringFunction(Enum):
"""The type of filtering function."""
none = "none"
random = "random"
top_k = "top_k"
top_p = "top_p"
top_k_top_p = "top_k_top_p"
sigmoid = "sigmoid"
@json_schema_type
@dataclass
class SyntheticDataGenerationRequest:
"""Request to generate synthetic data. A small batch of prompts and a filtering function"""
prompts: List[Message]
filtering_function: FilteringFunction = FilteringFunction.none
reward_scoring: Optional[RewardScoring] = None
@json_schema_type
@dataclass
class SyntheticDataGenerationResponse:
"""Response from the synthetic data generation. Batch of (prompt, response, score) tuples that pass the threshold."""
synthetic_data: List[KScoredPromptGenerations]
statistics: Optional[Dict[str, Any]] = None
class SyntheticDataGeneration(Protocol):
@webmethod(route="/synthetic_data_generation/generate")
def post_generate(
self,
request: SyntheticDataGenerationRequest,
) -> Union[SyntheticDataGenerationResponse]: ...
@json_schema_type
@dataclass
class CreateDatasetRequest:
"""Request to create a dataset."""
uuid: str
dataset: Dataset
class Datasets(Protocol):
@webmethod(route="/datasets/create")
def create_dataset(
self,
request: CreateDatasetRequest,
) -> None: ...
@webmethod(route="/datasets/get")
def get_dataset(
self,
dataset_id: str,
) -> Dataset: ...
@webmethod(route="/datasets/delete")
def delete_dataset(
self,
dataset_id: str,
) -> None: ...
@json_schema_type
@dataclass
class PostTrainingSFTRequest:
"""Request to finetune a model."""
job_uuid: str
model: PretrainedModel
dataset: Dataset
validation_dataset: Dataset
algorithm: FinetuningAlgorithm
algorithm_config: Union[
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
]
optimizer_config: OptimizerConfig
training_config: TrainingConfig
# TODO: define these
hyperparam_search_config: Dict[str, Any]
logger_config: Dict[str, Any]
@json_schema_type
@dataclass
class PostTrainingRLHFRequest:
"""Request to finetune a model."""
job_uuid: str
finetuned_model: URL
dataset: Dataset
validation_dataset: Dataset
algorithm: RLHFAlgorithm
algorithm_config: Union[DPOAlignmentConfig]
optimizer_config: OptimizerConfig
training_config: TrainingConfig
# TODO: define these
hyperparam_search_config: Dict[str, Any]
logger_config: Dict[str, Any]
@json_schema_type
@dataclass
class PostTrainingJobStatusResponse:
"""Status of a finetuning job."""
job_uuid: str
status: PostTrainingJobStatus
scheduled_at: Optional[datetime] = None
started_at: Optional[datetime] = None
completed_at: Optional[datetime] = None
resources_allocated: Optional[Dict[str, Any]] = None
checkpoints: List[Checkpoint] = field(default_factory=list)
@json_schema_type
@dataclass
class PostTrainingJobArtifactsResponse:
"""Artifacts of a finetuning job."""
job_uuid: str
checkpoints: List[Checkpoint] = field(default_factory=list)
# TODO(ashwin): metrics, evals
class PostTraining(Protocol):
@webmethod(route="/post_training/supervised_fine_tune/")
def post_supervised_fine_tune(
self,
request: PostTrainingSFTRequest,
) -> None: ...
@webmethod(route="/post_training/preference_optimize/")
def post_preference_optimize(
self,
request: PostTrainingRLHFRequest,
) -> None: ...
# sends SSE stream of logs
@webmethod(route="/post_training/job/logs")
def get_training_log_stream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
@webmethod(route="/post_training/job/status")
def get_training_job_status(
self, job_uuid: str
) -> PostTrainingJobStatusResponse: ...
@webmethod(route="/post_training/job/cancel")
def cancel_training_job(self, job_uuid: str) -> None: ...
@webmethod(route="/post_training/job/artifacts")
def get_training_job_artifacts(
self, job_uuid: str
) -> PostTrainingJobArtifactsResponse: ...
class LlamaStackEndpoints(
Inference,
AgenticSystem,
RewardScoring,
SyntheticDataGeneration,
Datasets,
PostTraining,
MemoryBanks,
): ...
if __name__ == "__main__":
print("Converting the spec to YAML (openapi.yaml) and HTML (openapi.html)")
spec = Specification(
LlamaStackEndpoints,
Options(
server=Server(url="http://any-hosted-llama-stack.com"),
info=Info(
title="[DRAFT] Llama Stack Specification",
version="0.0.1",
description="""This is the specification of the llama stack that provides
a set of endpoints and their corresponding interfaces that are tailored to
best leverage Llama Models. The specification is still in draft and subject to change.""",
),
),
)
with open("openapi.yaml", "w", encoding="utf-8") as fp:
yaml.dump(spec.get_json(), fp, allow_unicode=True)
with open("openapi.html", "w") as fp:
spec.write_html(fp, pretty_print=True)