llama-stack-mirror/tests/integration/responses/helpers.py
Ashwin Bharambe f50ce11a3b
feat(tests): make inference_recorder into api_recorder (include tool_invoke) (#3403)
Renames `inference_recorder.py` to `api_recorder.py` and extends it to
support recording/replaying tool invocations in addition to inference
calls.

This allows us to record web-search, etc. tool calls and thereafter
apply recordings for `tests/integration/responses`

## Test Plan

```
export OPENAI_API_KEY=...
export TAVILY_SEARCH_API_KEY=...

./scripts/integration-tests.sh --stack-config ci-tests \
   --suite responses --inference-mode record-if-missing
```
2025-10-09 14:27:51 -07:00

78 lines
2.9 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import time
def new_vector_store(openai_client, name, embedding_model, embedding_dimension):
"""Create a new vector store, cleaning up any existing one with the same name."""
# Ensure we don't reuse an existing vector store
vector_stores = openai_client.vector_stores.list()
for vector_store in vector_stores:
if vector_store.name == name:
openai_client.vector_stores.delete(vector_store_id=vector_store.id)
# Create a new vector store
# OpenAI SDK client uses extra_body for non-standard parameters
from openai import OpenAI
if isinstance(openai_client, OpenAI):
# OpenAI SDK client - use extra_body
vector_store = openai_client.vector_stores.create(
name=name,
extra_body={"embedding_model": embedding_model, "embedding_dimension": embedding_dimension},
)
else:
# LlamaStack client - direct parameter
vector_store = openai_client.vector_stores.create(
name=name, embedding_model=embedding_model, embedding_dimension=embedding_dimension
)
return vector_store
def upload_file(openai_client, name, file_path):
"""Upload a file, cleaning up any existing file with the same name."""
# Ensure we don't reuse an existing file
files = openai_client.files.list()
for file in files:
if file.filename == name:
openai_client.files.delete(file_id=file.id)
# Upload a text file with our document content
return openai_client.files.create(file=open(file_path, "rb"), purpose="assistants")
def wait_for_file_attachment(compat_client, vector_store_id, file_id):
"""Wait for a file to be attached to a vector store."""
file_attach_response = compat_client.vector_stores.files.retrieve(
vector_store_id=vector_store_id,
file_id=file_id,
)
while file_attach_response.status == "in_progress":
time.sleep(0.1)
file_attach_response = compat_client.vector_stores.files.retrieve(
vector_store_id=vector_store_id,
file_id=file_id,
)
assert file_attach_response.status == "completed", f"Expected file to be attached, got {file_attach_response}"
assert not file_attach_response.last_error
return file_attach_response
def setup_mcp_tools(tools, mcp_server_info):
"""Replace placeholder MCP server URLs with actual server info."""
# Create a deep copy to avoid modifying the original test case
import copy
tools_copy = copy.deepcopy(tools)
for tool in tools_copy:
if tool["type"] == "mcp" and tool["server_url"] == "<FILLED_BY_TEST_RUNNER>":
tool["server_url"] = mcp_server_info["server_url"]
return tools_copy