llama-stack-mirror/tests/integration
Matthew Farrellee ef26259209
feat: add llama guard 4 model (#2579)
add support for Llama Guard 4 model to the llama_guard safety provider

test with -

0. NVIDIA_API_KEY=... llama stack build --image-type conda --image-name
env-nvidia --providers
inference=remote::nvidia,safety=inline::llama-guard --run
1. llama-stack-client models register meta-llama/Llama-Guard-4-12B
--provider-model-id meta/llama-guard-4-12b
2. pytest tests/integration/safety/test_llama_guard.py

Co-authored-by: raghotham <rsm@meta.com>
2025-07-03 22:29:04 -07:00
..
agents feat: Add webmethod for deleting openai responses (#2160) 2025-06-30 11:28:02 +02:00
datasets fix: test_datasets HF scenario in CI (#2090) 2025-05-06 14:09:15 +02:00
eval fix: fix jobs api literal return type (#1757) 2025-03-21 14:04:21 -07:00
files test: skip files integrations tests for library client (#2407) 2025-06-05 13:42:10 -07:00
fixtures ci: let pytest run the distro server (#2586) 2025-07-03 10:51:46 -07:00
inference feat: Add suffix to openai_completions (#2449) 2025-06-13 16:06:06 -07:00
inspect test: add inspect unit test (#1417) 2025-03-10 15:36:18 -07:00
post_training feat: add huggingface post_training impl (#2132) 2025-05-16 14:41:28 -07:00
providers feat: Add NVIDIA NeMo datastore (#1852) 2025-04-28 09:41:59 -07:00
safety feat: add llama guard 4 model (#2579) 2025-07-03 22:29:04 -07:00
scoring feat(api): (1/n) datasets api clean up (#1573) 2025-03-17 16:55:45 -07:00
telemetry fix: skip failing tests (#2243) 2025-05-24 07:31:08 -07:00
test_cases feat: Add suffix to openai_completions (#2449) 2025-06-13 16:06:06 -07:00
tool_runtime fix: allow running vector tests with embedding dimension (#2467) 2025-06-19 13:29:04 +05:30
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io chore: Add support for vector-stores files api for Milvus (#2582) 2025-07-03 12:15:33 -07:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py fix: allow running vector tests with embedding dimension (#2467) 2025-06-19 13:29:04 +05:30
README.md test: Add one-step integration testing with server auto-start (#2580) 2025-07-01 14:48:46 -07:00

Llama Stack Integration Tests

We use pytest for parameterizing and running tests. You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have four ways to point to a stack:
    • server:<config> - automatically start a server with the given config (e.g., server:fireworks). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:together:8322)
    • a URL which points to a Llama Stack distribution server
    • a template (e.g., fireworks, together) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=fireworks,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Examples

Testing against a Server

Run all text inference tests by auto-starting a server with the fireworks config:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=server:fireworks \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Run tests with auto-server startup on a custom port:

pytest -s -v tests/integration/inference/ \
   --stack-config=server:together:8322 \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Run multiple test suites with auto-server (eliminates manual server management):

# Auto-start server and run all integration tests
export FIREWORKS_API_KEY=<your_key>

pytest -s -v tests/integration/inference/ tests/integration/safety/ tests/integration/agents/ \
   --stack-config=server:fireworks \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Testing with Library Client

Run all text inference tests with the together distribution:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Run all text inference tests with the together distribution and meta-llama/Llama-3.1-8B-Instruct:

pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=together \
   --text-model=meta-llama/Llama-3.1-8B-Instruct

Running all inference tests for a number of models:

TEXT_MODELS=meta-llama/Llama-3.1-8B-Instruct,meta-llama/Llama-3.1-70B-Instruct
VISION_MODELS=meta-llama/Llama-3.2-11B-Vision-Instruct
EMBEDDING_MODELS=all-MiniLM-L6-v2
export TOGETHER_API_KEY=<together_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=together \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Same thing but instead of using the distribution, use an adhoc stack with just one provider (fireworks for inference):

export FIREWORKS_API_KEY=<fireworks_api_key>

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=fireworks \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Running Vector IO tests for a number of embedding models:

EMBEDDING_MODELS=all-MiniLM-L6-v2

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=sentence-transformers,vector_io=sqlite-vec \
   --embedding-model=$EMBEDDING_MODELS