llama-stack-mirror/llama_stack/providers/registry/eval.py
Charlie Doern 41431d8bdd refactor: convert providers to be installed via package
currently providers have a `pip_package` list. Rather than make our own form of python dependency management, we should use `pyproject.toml` files in each provider declaring the dependencies in a more trackable manner.
Each provider can then be installed using the already in place `module` field in the ProviderSpec, pointing to the directory the provider lives in
we can then simply `uv pip install` this directory as opposed to installing the dependencies one by one

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-09-22 09:23:50 -04:00

42 lines
1.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.providers.datatypes import Api, InlineProviderSpec, ProviderSpec, RemoteProviderSpec
def available_providers() -> list[ProviderSpec]:
return [
InlineProviderSpec(
api=Api.eval,
provider_type="inline::meta-reference",
module="llama_stack.providers.inline.eval.meta_reference",
config_class="llama_stack.providers.inline.eval.meta_reference.MetaReferenceEvalConfig",
api_dependencies=[
Api.datasetio,
Api.datasets,
Api.scoring,
Api.inference,
Api.agents,
],
description="Meta's reference implementation of evaluation tasks with support for multiple languages and evaluation metrics.",
),
RemoteProviderSpec(
api=Api.eval,
adapter_type="nvidia",
provider_type="remote::nvidia",
module="llama_stack.providers.remote.eval.nvidia",
config_class="llama_stack.providers.remote.eval.nvidia.NVIDIAEvalConfig",
description="NVIDIA's evaluation provider for running evaluation tasks on NVIDIA's platform.",
api_dependencies=[
Api.datasetio,
Api.datasets,
Api.scoring,
Api.inference,
Api.agents,
],
),
]