llama-stack-mirror/llama_stack/providers/remote/inference/databricks/databricks.py
Matthew Farrellee fd06717d87 chore: make OpenAIMixin maintainable, turn OpenAIMixin into a pydantic.BaseModel
- implement get_api_key instead of relying on LiteLLMOpenAIMixin.get_api_key
 - remove use of LiteLLMOpenAIMixin
 - add default initialize/shutdown methods to OpenAIMixin
 - remove __init__s to allow proper pydantic construction
 - remove dead code from vllm adapter and associated / duplicate unit tests
 - update vllm adapter to use openaimixin for model registration
 - remove ModelRegistryHelper from fireworks & together adapters
 - remove Inference from nvidia adapter
 - complete type hints on embedding_model_metadata
 - allow extra fields on OpenAIMixin, for model_store, __provider_id__, etc
 - new recordings for ollama
 - enhance the list models error handling w/ new tests
 - update cerebras (remove cerebras-cloud-sdk) and anthropic (custom model listing) inference adapters
 - parametrized test_inference_client_caching
 - remove cerebras, databricks, fireworks, together from blanket mypy exclude
2025-10-05 07:31:19 -04:00

71 lines
2.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from databricks.sdk import WorkspaceClient
from llama_stack.apis.inference import (
OpenAICompletion,
)
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import DatabricksImplConfig
logger = get_logger(name=__name__, category="inference::databricks")
class DatabricksInferenceAdapter(OpenAIMixin):
config: DatabricksImplConfig
# source: https://docs.databricks.com/aws/en/machine-learning/foundation-model-apis/supported-models
embedding_model_metadata: dict[str, dict[str, int]] = {
"databricks-gte-large-en": {"embedding_dimension": 1024, "context_length": 8192},
"databricks-bge-large-en": {"embedding_dimension": 1024, "context_length": 512},
}
def get_api_key(self) -> str:
return self.config.api_token.get_secret_value()
def get_base_url(self) -> str:
return f"{self.config.url}/serving-endpoints"
async def get_models(self) -> list[str] | None:
return [
endpoint.name
for endpoint in WorkspaceClient(
host=self.config.url, token=self.get_api_key()
).serving_endpoints.list() # TODO: this is not async
]
async def should_refresh_models(self) -> bool:
return False
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
raise NotImplementedError()