llama-stack-mirror/tests/integration/telemetry/collectors/in_memory.py
Emilio Garcia ba50790a28
feat(tests): metrics tests (#3966)
# What does this PR do?
1. Make telemetry tests as easy as possible for users by expanding the
`SpanStub` data class and creating the `MetricStub` dataclass as a way
to consistently marshal telemetry data in test fixtures and unmarshal
and handle it in tests.
2. Structure server and client tests to always follow the same standards
for consistent testing experience by using the `SpanStub` and
`MetricStub` data class objects.
3. Enable Metrics Testing for completions endpoint
4. Correct token metrics to use histograms instead of counts to capture
tokens per request rather than a cumulative count of tokens over the
lifecycle of the server.

## Test Plan
These are tests
2025-11-05 10:26:15 -08:00

87 lines
3.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""In-memory telemetry collector for library-client tests."""
import opentelemetry.metrics as otel_metrics
import opentelemetry.trace as otel_trace
from opentelemetry import metrics, trace
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import InMemoryMetricReader
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter
import llama_stack.core.telemetry.telemetry as telemetry_module
from .base import BaseTelemetryCollector, MetricStub, SpanStub
class InMemoryTelemetryCollector(BaseTelemetryCollector):
"""In-memory telemetry collector for library-client tests.
Converts OpenTelemetry span objects to SpanStub objects to ensure
consistent interface with OTLP collector used in server mode.
"""
def __init__(self, span_exporter: InMemorySpanExporter, metric_reader: InMemoryMetricReader) -> None:
super().__init__()
self._span_exporter = span_exporter
self._metric_reader = metric_reader
def _snapshot_spans(self) -> tuple[SpanStub, ...]:
spans = []
for span in self._span_exporter.get_finished_spans():
spans.append(self._create_span_stub_from_opentelemetry(span))
return tuple(spans)
def _snapshot_metrics(self) -> tuple[MetricStub, ...] | None:
data = self._metric_reader.get_metrics_data()
if not data or not data.resource_metrics:
return None
metric_stubs = []
for resource_metric in data.resource_metrics:
if resource_metric.scope_metrics:
for scope_metric in resource_metric.scope_metrics:
for metric in scope_metric.metrics:
metric_stub = self._extract_metric_from_opentelemetry(metric)
if metric_stub:
metric_stubs.append(metric_stub)
return tuple(metric_stubs) if metric_stubs else None
def _clear_impl(self) -> None:
self._span_exporter.clear()
self._metric_reader.get_metrics_data()
class InMemoryTelemetryManager:
def __init__(self) -> None:
if hasattr(otel_trace, "_TRACER_PROVIDER_SET_ONCE"):
otel_trace._TRACER_PROVIDER_SET_ONCE._done = False # type: ignore[attr-defined]
if hasattr(otel_metrics, "_METER_PROVIDER_SET_ONCE"):
otel_metrics._METER_PROVIDER_SET_ONCE._done = False # type: ignore[attr-defined]
span_exporter = InMemorySpanExporter()
tracer_provider = TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(span_exporter))
trace.set_tracer_provider(tracer_provider)
metric_reader = InMemoryMetricReader()
meter_provider = MeterProvider(metric_readers=[metric_reader])
metrics.set_meter_provider(meter_provider)
telemetry_module._TRACER_PROVIDER = tracer_provider
self.collector = InMemoryTelemetryCollector(span_exporter, metric_reader)
self._tracer_provider = tracer_provider
self._meter_provider = meter_provider
def shutdown(self) -> None:
telemetry_module._TRACER_PROVIDER = None
self._tracer_provider.shutdown()
self._meter_provider.shutdown()