llama-stack-mirror/llama_stack/distribution/ui
Ilya Kolchinsky 40f41af2f7
feat: Add a direct (non-agentic) RAG option to the Playground RAG page (#1940)
# What does this PR do?
This PR makes it possible to switch between agentic and non-agentic RAG
when running the respective Playground page.
When non-agentic RAG is selected, user queries are answered by directly
querying the vector DB, augmenting the prompt, and sending the extended
prompt to the model via Inference API.

## Test Plan
- Launch the Playground and go to the RAG page;
- Select the vector DB ID;
- Adjust other configuration parameters if necessary;
- Set the radio button to Agent-based RAG;
- Send a message to the chat;
- The query will be answered by an agent using the knowledge search tool
as indicated by the output;
- Click the 'Clear Chat' button to make it possible to switch modes;
- Send a message to the chat again;
- This time, the query will be answered by the model directly as can be
deduced from the reply.
2025-04-11 10:16:10 -07:00
..
modules fix: add tavily_search option to playground api (#1909) 2025-04-09 15:56:41 +02:00
page feat: Add a direct (non-agentic) RAG option to the Playground RAG page (#1940) 2025-04-11 10:16:10 -07:00
__init__.py move playground ui to llama-stack repo (#536) 2024-11-26 22:04:21 -08:00
app.py feat: Add tools page to playground (#1904) 2025-04-09 15:26:52 +02:00
Containerfile fix: Playground Container Issue (#1868) 2025-04-09 11:45:15 +02:00
README.md chore: simplify running the demo UI (#1907) 2025-04-09 11:22:29 -07:00
requirements.txt chore: simplify running the demo UI (#1907) 2025-04-09 11:22:29 -07:00

(Experimental) LLama Stack UI

Docker Setup

⚠️ This is a work in progress.

Developer Setup

  1. Start up Llama Stack API server. More details here.
llama stack build --template together --image-type conda

llama stack run together
  1. (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
llama-stack-client benchmarks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
  1. Start Streamlit UI
uv run --with ".[ui]" streamlit run llama_stack/distribution/ui/app.py

Environment Variables

Environment Variable Description Default Value
LLAMA_STACK_ENDPOINT The endpoint for the Llama Stack http://localhost:8321
FIREWORKS_API_KEY API key for Fireworks provider (empty string)
TOGETHER_API_KEY API key for Together provider (empty string)
SAMBANOVA_API_KEY API key for SambaNova provider (empty string)
OPENAI_API_KEY API key for OpenAI provider (empty string)