llama-stack-mirror/llama_stack/apis/eval/eval.py
Xi Yan abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00

70 lines
2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Literal, Optional, Protocol, Union
from typing_extensions import Annotated
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_models.schema_utils import json_schema_type, webmethod
from llama_stack.apis.scoring_functions import * # noqa: F403
from llama_stack.apis.agents import AgentConfig
from llama_stack.apis.common.job_types import Job, JobStatus
from llama_stack.apis.scoring import * # noqa: F403
@json_schema_type
class ModelCandidate(BaseModel):
type: Literal["model"] = "model"
model: str
sampling_params: SamplingParams
system_message: Optional[SystemMessage] = None
@json_schema_type
class AgentCandidate(BaseModel):
type: Literal["agent"] = "agent"
config: AgentConfig
EvalCandidate = Annotated[
Union[ModelCandidate, AgentCandidate], Field(discriminator="type")
]
@json_schema_type
class EvaluateResponse(BaseModel):
generations: List[Dict[str, Any]]
# each key in the dict is a scoring function name
scores: Dict[str, ScoringResult]
class Eval(Protocol):
@webmethod(route="/eval/evaluate_batch", method="POST")
async def evaluate_batch(
self,
dataset_id: str,
candidate: EvalCandidate,
scoring_functions: List[str],
) -> Job: ...
@webmethod(route="/eval/evaluate", method="POST")
async def evaluate(
self,
input_rows: List[Dict[str, Any]],
candidate: EvalCandidate,
scoring_functions: List[str],
) -> EvaluateResponse: ...
@webmethod(route="/eval/job/status", method="GET")
async def job_status(self, job_id: str) -> Optional[JobStatus]: ...
@webmethod(route="/eval/job/cancel", method="POST")
async def job_cancel(self, job_id: str) -> None: ...
@webmethod(route="/eval/job/result", method="GET")
async def job_result(self, job_id: str) -> EvaluateResponse: ...