feat: make training config fields optional (#1861)

# What does this PR do?

Today, supervised_fine_tune itself and the `TrainingConfig` class have a
bunch of required fields that a provider implementation might not need.

for example, if a provider wants to handle hyperparameters in its
configuration as well as any type of dataset retrieval, optimizer or
LoRA config, a user will still need to pass in a virtually empty
`DataConfig`, `OptimizerConfig` and `AlgorithmConfig` in some cases.

Many of these fields are intended to work specifically with llama models
and knobs intended for customizing inline.

Adding remote post_training providers will require loosening these
arguments, or forcing users to pass in empty objects to satisfy the
pydantic models.

Signed-off-by: Charlie Doern <cdoern@redhat.com>
This commit is contained in:
Charlie Doern 2025-04-12 04:13:45 -04:00 committed by GitHub
parent 70a7e4d51e
commit 0751a960a5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 29 additions and 21 deletions

View file

@ -9778,13 +9778,16 @@
"type": "integer"
},
"max_steps_per_epoch": {
"type": "integer"
"type": "integer",
"default": 1
},
"gradient_accumulation_steps": {
"type": "integer"
"type": "integer",
"default": 1
},
"max_validation_steps": {
"type": "integer"
"type": "integer",
"default": 1
},
"data_config": {
"$ref": "#/components/schemas/DataConfig"
@ -9804,10 +9807,7 @@
"required": [
"n_epochs",
"max_steps_per_epoch",
"gradient_accumulation_steps",
"max_validation_steps",
"data_config",
"optimizer_config"
"gradient_accumulation_steps"
],
"title": "TrainingConfig"
},
@ -10983,8 +10983,7 @@
"job_uuid",
"training_config",
"hyperparam_search_config",
"logger_config",
"model"
"logger_config"
],
"title": "SupervisedFineTuneRequest"
},

View file

@ -6744,10 +6744,13 @@ components:
type: integer
max_steps_per_epoch:
type: integer
default: 1
gradient_accumulation_steps:
type: integer
default: 1
max_validation_steps:
type: integer
default: 1
data_config:
$ref: '#/components/schemas/DataConfig'
optimizer_config:
@ -6762,9 +6765,6 @@ components:
- n_epochs
- max_steps_per_epoch
- gradient_accumulation_steps
- max_validation_steps
- data_config
- optimizer_config
title: TrainingConfig
PreferenceOptimizeRequest:
type: object
@ -7498,7 +7498,6 @@ components:
- training_config
- hyperparam_search_config
- logger_config
- model
title: SupervisedFineTuneRequest
SyntheticDataGenerateRequest:
type: object

View file

@ -60,11 +60,11 @@ class EfficiencyConfig(BaseModel):
@json_schema_type
class TrainingConfig(BaseModel):
n_epochs: int
max_steps_per_epoch: int
gradient_accumulation_steps: int
max_validation_steps: int
data_config: DataConfig
optimizer_config: OptimizerConfig
max_steps_per_epoch: int = 1
gradient_accumulation_steps: int = 1
max_validation_steps: Optional[int] = 1
data_config: Optional[DataConfig] = None
optimizer_config: Optional[OptimizerConfig] = None
efficiency_config: Optional[EfficiencyConfig] = None
dtype: Optional[str] = "bf16"
@ -177,9 +177,9 @@ class PostTraining(Protocol):
training_config: TrainingConfig,
hyperparam_search_config: Dict[str, Any],
logger_config: Dict[str, Any],
model: str = Field(
default="Llama3.2-3B-Instruct",
description="Model descriptor from `llama model list`",
model: Optional[str] = Field(
default=None,
description="Model descriptor for training if not in provider config`",
),
checkpoint_dir: Optional[str] = None,
algorithm_config: Optional[AlgorithmConfig] = None,

View file

@ -38,6 +38,8 @@ from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.post_training import (
Checkpoint,
DataConfig,
EfficiencyConfig,
LoraFinetuningConfig,
OptimizerConfig,
QATFinetuningConfig,
@ -89,6 +91,10 @@ class LoraFinetuningSingleDevice:
datasetio_api: DatasetIO,
datasets_api: Datasets,
) -> None:
assert isinstance(training_config.data_config, DataConfig), "DataConfig must be initialized"
assert isinstance(training_config.efficiency_config, EfficiencyConfig), "EfficiencyConfig must be initialized"
self.job_uuid = job_uuid
self.training_config = training_config
if not isinstance(algorithm_config, LoraFinetuningConfig):
@ -188,6 +194,7 @@ class LoraFinetuningSingleDevice:
self._tokenizer = await self._setup_tokenizer()
log.info("Tokenizer is initialized.")
assert isinstance(self.training_config.optimizer_config, OptimizerConfig), "OptimizerConfig must be initialized"
self._optimizer = await self._setup_optimizer(optimizer_config=self.training_config.optimizer_config)
log.info("Optimizer is initialized.")
@ -195,6 +202,8 @@ class LoraFinetuningSingleDevice:
self._model.set_num_output_chunks(self._loss_fn.num_output_chunks)
log.info("Loss is initialized.")
assert isinstance(self.training_config.data_config, DataConfig), "DataConfig must be initialized"
self._training_sampler, self._training_dataloader = await self._setup_data(
dataset_id=self.training_config.data_config.dataset_id,
tokenizer=self._tokenizer,
@ -452,6 +461,7 @@ class LoraFinetuningSingleDevice:
"""
The core training loop.
"""
assert isinstance(self.training_config.data_config, DataConfig), "DataConfig must be initialized"
# Initialize tokens count and running loss (for grad accumulation)
t0 = time.perf_counter()
running_loss: float = 0.0