forked from phoenix-oss/llama-stack-mirror
feat(rag): entire document context with attachments (#1763)
# What does this PR do? **What** Instead of adhoc creating a vectordb and chunking when documents ae sent as an attachment to agent turn, we directly pass raw text from document into messages to model for user context, and let model perform summarization directly. This removes the magic behaviour, and yields better performance than existing approach. **Improved Performance** - RAG lifecycle notebook - Model: 0.3 factuality score - (+ websearch) Agent: 0.44 factuality score - (+ vector db) Agent: 0.3 factuality score - (+ raw context) Agent: 0.6 factuality score Closes https://github.com/meta-llama/llama-stack/issues/1478 [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan - [NEW] added section in RAG lifecycle notebook shows better performance <img width="840" alt="image" src="https://github.com/user-attachments/assets/a0c4e816-809a-41c0-9124-89825983e3f5" /> [//]: # (## Documentation)
This commit is contained in:
parent
8c351fe432
commit
094eb6a5ae
2 changed files with 375 additions and 141 deletions
|
@ -6,14 +6,12 @@
|
|||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import secrets
|
||||
import string
|
||||
import uuid
|
||||
from datetime import datetime, timezone
|
||||
from typing import AsyncGenerator, List, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import httpx
|
||||
|
||||
|
@ -60,7 +58,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.apis.safety import Safety
|
||||
from llama_stack.apis.tools import (
|
||||
RAGDocument,
|
||||
ToolGroups,
|
||||
ToolInvocationResult,
|
||||
ToolRuntime,
|
||||
|
@ -453,8 +450,16 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
stream: bool = False,
|
||||
documents: Optional[List[Document]] = None,
|
||||
) -> AsyncGenerator:
|
||||
# if document is passed in a turn, we parse the raw text of the document
|
||||
# and sent it as a user message
|
||||
if documents:
|
||||
await self.handle_documents(session_id, documents, input_messages)
|
||||
contexts = []
|
||||
for document in documents:
|
||||
raw_document_text = await get_raw_document_text(document)
|
||||
contexts.append(raw_document_text)
|
||||
|
||||
attached_context = "\n".join(contexts)
|
||||
input_messages[-1].context = attached_context
|
||||
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
# if the session has a memory bank id, let the memory tool use it
|
||||
|
@ -829,7 +834,10 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
)
|
||||
tool_name_to_args[tool_def.identifier] = toolgroup_to_args.get(toolgroup_name, {})
|
||||
|
||||
self.tool_defs, self.tool_name_to_args = list(tool_name_to_def.values()), tool_name_to_args
|
||||
self.tool_defs, self.tool_name_to_args = (
|
||||
list(tool_name_to_def.values()),
|
||||
tool_name_to_args,
|
||||
)
|
||||
|
||||
def _parse_toolgroup_name(self, toolgroup_name_with_maybe_tool_name: str) -> tuple[str, Optional[str]]:
|
||||
"""Parse a toolgroup name into its components.
|
||||
|
@ -880,144 +888,27 @@ class ChatAgent(ShieldRunnerMixin):
|
|||
logger.debug(f"tool call {tool_name_str} completed with result: {result}")
|
||||
return result
|
||||
|
||||
async def handle_documents(
|
||||
self,
|
||||
session_id: str,
|
||||
documents: List[Document],
|
||||
input_messages: List[Message],
|
||||
) -> None:
|
||||
memory_tool = any(tool_def.tool_name == MEMORY_QUERY_TOOL for tool_def in self.tool_defs)
|
||||
code_interpreter_tool = any(tool_def.tool_name == BuiltinTool.code_interpreter for tool_def in self.tool_defs)
|
||||
content_items = []
|
||||
url_items = []
|
||||
pattern = re.compile("^(https?://|file://|data:)")
|
||||
for d in documents:
|
||||
if isinstance(d.content, URL):
|
||||
url_items.append(d.content)
|
||||
elif pattern.match(d.content):
|
||||
url_items.append(URL(uri=d.content))
|
||||
else:
|
||||
content_items.append(d)
|
||||
|
||||
# Save the contents to a tempdir and use its path as a URL if code interpreter is present
|
||||
if code_interpreter_tool:
|
||||
for c in content_items:
|
||||
temp_file_path = os.path.join(self.tempdir, f"{make_random_string()}.txt")
|
||||
with open(temp_file_path, "w") as temp_file:
|
||||
temp_file.write(c.content)
|
||||
url_items.append(URL(uri=f"file://{temp_file_path}"))
|
||||
|
||||
if memory_tool and code_interpreter_tool:
|
||||
# if both memory and code_interpreter are available, we download the URLs
|
||||
# and attach the data to the last message.
|
||||
await attachment_message(self.tempdir, url_items, input_messages[-1])
|
||||
# Since memory is present, add all the data to the memory bank
|
||||
await self.add_to_session_vector_db(session_id, documents)
|
||||
elif code_interpreter_tool:
|
||||
# if only code_interpreter is available, we download the URLs to a tempdir
|
||||
# and attach the path to them as a message to inference with the
|
||||
# assumption that the model invokes the code_interpreter tool with the path
|
||||
await attachment_message(self.tempdir, url_items, input_messages[-1])
|
||||
elif memory_tool:
|
||||
# if only memory is available, we load the data from the URLs and content items to the memory bank
|
||||
await self.add_to_session_vector_db(session_id, documents)
|
||||
else:
|
||||
# if no memory or code_interpreter tool is available,
|
||||
# we try to load the data from the URLs and content items as a message to inference
|
||||
# and add it to the last message's context
|
||||
input_messages[-1].context = "\n".join(
|
||||
[doc.content for doc in content_items] + await load_data_from_urls(url_items)
|
||||
)
|
||||
|
||||
async def _ensure_vector_db(self, session_id: str) -> str:
|
||||
session_info = await self.storage.get_session_info(session_id)
|
||||
if session_info is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
|
||||
if session_info.vector_db_id is None:
|
||||
vector_db_id = f"vector_db_{session_id}"
|
||||
|
||||
# TODO: the semantic for registration is definitely not "creation"
|
||||
# so we need to fix it if we expect the agent to create a new vector db
|
||||
# for each session
|
||||
await self.vector_io_api.register_vector_db(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
)
|
||||
await self.storage.add_vector_db_to_session(session_id, vector_db_id)
|
||||
else:
|
||||
vector_db_id = session_info.vector_db_id
|
||||
|
||||
return vector_db_id
|
||||
|
||||
async def add_to_session_vector_db(self, session_id: str, data: List[Document]) -> None:
|
||||
vector_db_id = await self._ensure_vector_db(session_id)
|
||||
documents = [
|
||||
RAGDocument(
|
||||
document_id=str(uuid.uuid4()),
|
||||
content=a.content,
|
||||
mime_type=a.mime_type,
|
||||
metadata={},
|
||||
)
|
||||
for a in data
|
||||
]
|
||||
await self.tool_runtime_api.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=vector_db_id,
|
||||
chunk_size_in_tokens=512,
|
||||
)
|
||||
async def load_data_from_url(url: str) -> str:
|
||||
if url.startswith("http"):
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(url)
|
||||
resp = r.text
|
||||
return resp
|
||||
raise ValueError(f"Unexpected URL: {type(url)}")
|
||||
|
||||
|
||||
async def load_data_from_urls(urls: List[URL]) -> List[str]:
|
||||
data = []
|
||||
for url in urls:
|
||||
uri = url.uri
|
||||
if uri.startswith("file://"):
|
||||
filepath = uri[len("file://") :]
|
||||
with open(filepath, "r") as f:
|
||||
data.append(f.read())
|
||||
elif uri.startswith("http"):
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(uri)
|
||||
resp = r.text
|
||||
data.append(resp)
|
||||
return data
|
||||
|
||||
|
||||
async def attachment_message(tempdir: str, urls: List[URL], message: UserMessage) -> None:
|
||||
contents = []
|
||||
|
||||
for url in urls:
|
||||
uri = url.uri
|
||||
if uri.startswith("file://"):
|
||||
filepath = uri[len("file://") :]
|
||||
elif uri.startswith("http"):
|
||||
path = urlparse(uri).path
|
||||
basename = os.path.basename(path)
|
||||
filepath = f"{tempdir}/{make_random_string() + basename}"
|
||||
logger.info(f"Downloading {url} -> {filepath}")
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(uri)
|
||||
resp = r.text
|
||||
with open(filepath, "w") as fp:
|
||||
fp.write(resp)
|
||||
else:
|
||||
raise ValueError(f"Unsupported URL {url}")
|
||||
|
||||
contents.append(
|
||||
TextContentItem(
|
||||
text=f'# User provided a file accessible to you at "{filepath}"\nYou can use code_interpreter to load and inspect it.'
|
||||
)
|
||||
)
|
||||
|
||||
if isinstance(message.content, list):
|
||||
message.content.extend(contents)
|
||||
async def get_raw_document_text(document: Document) -> str:
|
||||
if not document.mime_type.startswith("text/"):
|
||||
raise ValueError(f"Unexpected document mime type: {document.mime_type}")
|
||||
if isinstance(document.content, URL):
|
||||
return await load_data_from_url(document.content.uri)
|
||||
elif isinstance(document.content, str):
|
||||
return document.content
|
||||
elif isinstance(document.content, TextContentItem):
|
||||
return document.content.text
|
||||
else:
|
||||
if isinstance(message.content, str):
|
||||
message.content = [TextContentItem(text=message.content)] + contents
|
||||
else:
|
||||
message.content = [message.content] + contents
|
||||
raise ValueError(f"Unexpected document content type: {type(document.content)}")
|
||||
|
||||
|
||||
def _interpret_content_as_attachment(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue