Use new definitions of Model / SKU

This commit is contained in:
Ashwin Bharambe 2024-07-31 11:36:16 -07:00
parent 156bfa0e15
commit 09cf3fe78b
8 changed files with 63 additions and 65 deletions

View file

@ -16,12 +16,13 @@ import httpx
from huggingface_hub import snapshot_download
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
from llama_models.datatypes import CheckpointQuantizationFormat, ModelDefinition
from llama_models.datatypes import Model
from llama_models.sku_list import (
llama3_1_model_list,
llama_meta_folder_path,
llama_meta_pth_size,
all_registered_models,
llama_meta_net_info,
resolve_model,
)
from termcolor import cprint
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.utils import DEFAULT_DUMP_DIR
@ -45,7 +46,7 @@ class Download(Subcommand):
self.parser.set_defaults(func=self._run_download_cmd)
def _add_arguments(self):
models = llama3_1_model_list()
models = all_registered_models()
self.parser.add_argument(
"--source",
choices=["meta", "huggingface"],
@ -53,7 +54,7 @@ class Download(Subcommand):
)
self.parser.add_argument(
"--model-id",
choices=[x.sku.value for x in models],
choices=[x.descriptor() for x in models],
required=True,
)
self.parser.add_argument(
@ -80,12 +81,12 @@ safetensors files to avoid downloading duplicate weights.
""",
)
def _hf_download(self, model: ModelDefinition, hf_token: str, ignore_patterns: str):
repo_id = model.huggingface_id
def _hf_download(self, model: Model, hf_token: str, ignore_patterns: str):
repo_id = model.huggingface_repo
if repo_id is None:
raise ValueError(f"No repo id found for model {model.sku.value}")
raise ValueError(f"No repo id found for model {model.descriptor()}")
output_dir = Path(DEFAULT_CHECKPOINT_DIR) / model.sku.value
output_dir = Path(DEFAULT_CHECKPOINT_DIR) / model.descriptor()
os.makedirs(output_dir, exist_ok=True)
try:
true_output_dir = snapshot_download(
@ -111,43 +112,37 @@ safetensors files to avoid downloading duplicate weights.
print(f"Successfully downloaded model to {true_output_dir}")
def _meta_download(self, model: ModelDefinition, meta_url: str):
output_dir = Path(DEFAULT_CHECKPOINT_DIR) / model.sku.value
def _meta_download(self, model: Model, meta_url: str):
output_dir = Path(DEFAULT_CHECKPOINT_DIR) / model.descriptor()
os.makedirs(output_dir, exist_ok=True)
gpus = model.hardware_requirements.gpu_count
files = [
"tokenizer.model",
"params.json",
]
if model.quantization_format == CheckpointQuantizationFormat.fp8_mixed:
files.extend([f"fp8_scales_{i}.pt" for i in range(gpus)])
files.extend([f"consolidated.{i:02d}.pth" for i in range(gpus)])
folder_path = llama_meta_folder_path(model)
pth_size = llama_meta_pth_size(model)
info = llama_meta_net_info(model)
# I believe we can use some concurrency here if needed but not sure it is worth it
for f in files:
for f in info.files:
output_file = str(output_dir / f)
url = meta_url.replace("*", f"{folder_path}/{f}")
total_size = pth_size if "consolidated" in f else 0
url = meta_url.replace("*", f"{info.folder}/{f}")
total_size = info.pth_size if "consolidated" in f else 0
cprint(f"Downloading `{f}`...", "white")
downloader = ResumableDownloader(url, output_file, total_size)
asyncio.run(downloader.download())
def _run_download_cmd(self, args: argparse.Namespace):
by_id = {model.sku.value: model for model in llama3_1_model_list()}
assert args.model_id in by_id, f"Unexpected model id {args.model_id}"
model = resolve_model(args.model_id)
if model is None:
self.parser.error(f"Model {args.model_id} not found")
return
model = by_id[args.model_id]
if args.source == "huggingface":
self._hf_download(model, args.hf_token, args.ignore_patterns)
else:
if not args.meta_url:
self.parser.error(
"Please provide a meta url to download the model from llama.meta.com"
meta_url = args.meta_url
if not meta_url:
meta_url = input(
"Please provide the signed URL you received via email (e.g., https://llama3-1.llamameta.net/*?Policy...): "
)
self._meta_download(model, args.meta_url)
assert meta_url is not None and "llama3-1.llamameta.net" in meta_url
self._meta_download(model, meta_url)
class ResumableDownloader:
@ -170,7 +165,10 @@ class ResumableDownloader:
if self.total_size > 0:
return
response = await client.head(self.url, follow_redirects=True)
# Force disable compression when trying to retrieve file size
response = await client.head(
self.url, follow_redirects=True, headers={"Accept-Encoding": "identity"}
)
response.raise_for_status()
self.url = str(response.url) # Update URL in case of redirects
self.total_size = int(response.headers.get("Content-Length", 0))

View file

@ -9,7 +9,7 @@ import json
from enum import Enum
from llama_models.sku_list import llama3_1_model_list
from llama_models.sku_list import resolve_model
from termcolor import colored
@ -47,20 +47,13 @@ class ModelDescribe(Subcommand):
)
def _run_model_describe_cmd(self, args: argparse.Namespace) -> None:
models = llama3_1_model_list()
by_id = {model.sku.value: model for model in models}
if args.model_id not in by_id:
print(
model = resolve_model(args.model_id)
if model is None:
self.parser.error(
f"Model {args.model_id} not found; try 'llama model list' for a list of available models."
)
return
model = by_id[args.model_id]
sampling_params = model.recommended_sampling_params.dict()
for k in ("max_tokens", "repetition_penalty"):
del sampling_params[k]
rows = [
(
colored("Model", "white", attrs=["bold"]),
@ -70,13 +63,20 @@ class ModelDescribe(Subcommand):
("Description", model.description_markdown),
("Context Length", f"{model.max_seq_length // 1024}K tokens"),
("Weights format", model.quantization_format.value),
(
"Recommended sampling params",
json.dumps(sampling_params, cls=EnumEncoder, indent=4),
),
("Model params.json", json.dumps(model.model_args, indent=4)),
]
if model.recommended_sampling_params is not None:
sampling_params = model.recommended_sampling_params.dict()
for k in ("max_tokens", "repetition_penalty"):
del sampling_params[k]
rows.append(
(
"Recommended sampling params",
json.dumps(sampling_params, cls=EnumEncoder, indent=4),
)
)
print_table(
rows,
separate_rows=True,

View file

@ -6,7 +6,7 @@
import argparse
from llama_models.sku_list import llama3_1_model_list
from llama_models.sku_list import all_registered_models
from llama_toolchain.cli.subcommand import Subcommand
from llama_toolchain.cli.table import print_table
@ -30,21 +30,22 @@ class ModelList(Subcommand):
pass
def _run_model_list_cmd(self, args: argparse.Namespace) -> None:
models = llama3_1_model_list()
headers = [
"Model ID",
"HuggingFace ID",
"Model Descriptor",
"HuggingFace Repo",
"Context Length",
"Hardware Requirements",
]
rows = []
for model in models:
for model in all_registered_models():
req = model.hardware_requirements
descriptor = model.descriptor()
rows.append(
[
model.sku.value,
model.huggingface_id,
descriptor,
model.huggingface_repo,
f"{model.max_seq_length // 1024}K",
f"{req.gpu_count} GPU{'s' if req.gpu_count > 1 else ''}, each >= {req.memory_gb_per_gpu}GB VRAM",
]