fix(api): don't return list for runtime tools (#1686)

# What does this PR do?

Don't return list for runtime tools. Instead return Response object for
pagination and consistency with other APIs.

---------

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
Ihar Hrachyshka 2025-04-01 03:53:11 -04:00 committed by GitHub
parent b440a1dc42
commit 0a895c70d1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
13 changed files with 170 additions and 108 deletions

View file

@ -88,6 +88,10 @@ class ListToolsResponse(BaseModel):
data: List[Tool]
class ListToolDefsResponse(BaseModel):
data: list[ToolDef]
@runtime_checkable
@trace_protocol
class ToolGroups(Protocol):
@ -148,7 +152,7 @@ class ToolRuntime(Protocol):
@webmethod(route="/tool-runtime/list-tools", method="GET")
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]: ...
) -> ListToolDefsResponse: ...
@webmethod(route="/tool-runtime/invoke", method="POST")
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:

View file

@ -46,11 +46,11 @@ from llama_stack.apis.scoring import (
from llama_stack.apis.shields import Shield
from llama_stack.apis.telemetry import MetricEvent, MetricInResponse, Telemetry
from llama_stack.apis.tools import (
ListToolDefsResponse,
RAGDocument,
RAGQueryConfig,
RAGQueryResult,
RAGToolRuntime,
ToolDef,
ToolRuntime,
)
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
@ -707,6 +707,6 @@ class ToolRuntimeRouter(ToolRuntime):
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
) -> ListToolDefsResponse:
logger.debug(f"ToolRuntimeRouter.list_runtime_tools: {tool_group_id}")
return await self.routing_table.get_provider_impl(tool_group_id).list_tools(tool_group_id, mcp_endpoint)

View file

@ -568,7 +568,7 @@ class ToolGroupsRoutingTable(CommonRoutingTableImpl, ToolGroups):
tool_defs = await self.impls_by_provider_id[provider_id].list_runtime_tools(toolgroup_id, mcp_endpoint)
tool_host = ToolHost.model_context_protocol if mcp_endpoint else ToolHost.distribution
for tool_def in tool_defs:
for tool_def in tool_defs.data:
tools.append(
ToolWithACL(
identifier=tool_def.name,

View file

@ -9,10 +9,11 @@ import asyncio
import logging
import os
import tempfile
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.tools import (
ListToolDefsResponse,
Tool,
ToolDef,
ToolInvocationResult,
@ -46,20 +47,22 @@ class CodeInterpreterToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
return [
ToolDef(
name="code_interpreter",
description="Execute code",
parameters=[
ToolParameter(
name="code",
description="The code to execute",
parameter_type="string",
),
],
)
]
) -> ListToolDefsResponse:
return ListToolDefsResponse(
data=[
ToolDef(
name="code_interpreter",
description="Execute code",
parameters=[
ToolParameter(
name="code",
description="The code to execute",
parameter_type="string",
),
],
)
]
)
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
script = kwargs["code"]

View file

@ -20,6 +20,7 @@ from llama_stack.apis.common.content_types import (
)
from llama_stack.apis.inference import Inference
from llama_stack.apis.tools import (
ListToolDefsResponse,
RAGDocument,
RAGQueryConfig,
RAGQueryResult,
@ -162,27 +163,29 @@ class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
) -> ListToolDefsResponse:
# Parameters are not listed since these methods are not yet invoked automatically
# by the LLM. The method is only implemented so things like /tools can list without
# encountering fatals.
return [
ToolDef(
name="insert_into_memory",
description="Insert documents into memory",
),
ToolDef(
name="knowledge_search",
description="Search for information in a database.",
parameters=[
ToolParameter(
name="query",
description="The query to search for. Can be a natural language sentence or keywords.",
parameter_type="string",
),
],
),
]
return ListToolDefsResponse(
data=[
ToolDef(
name="insert_into_memory",
description="Insert documents into memory",
),
ToolDef(
name="knowledge_search",
description="Search for information in a database.",
parameters=[
ToolParameter(
name="query",
description="The query to search for. Can be a natural language sentence or keywords.",
parameter_type="string",
),
],
),
]
)
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
vector_db_ids = kwargs.get("vector_db_ids", [])

View file

@ -5,12 +5,13 @@
# the root directory of this source tree.
import json
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
import httpx
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.tools import (
ListToolDefsResponse,
Tool,
ToolDef,
ToolInvocationResult,
@ -50,20 +51,22 @@ class BingSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequestP
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
return [
ToolDef(
name="web_search",
description="Search the web using Bing Search API",
parameters=[
ToolParameter(
name="query",
description="The query to search for",
parameter_type="string",
)
],
)
]
) -> ListToolDefsResponse:
return ListToolDefsResponse(
data=[
ToolDef(
name="web_search",
description="Search the web using Bing Search API",
parameters=[
ToolParameter(
name="query",
description="The query to search for",
parameter_type="string",
)
],
)
]
)
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
api_key = self._get_api_key()

View file

@ -4,12 +4,13 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
import httpx
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.tools import (
ListToolDefsResponse,
Tool,
ToolDef,
ToolInvocationResult,
@ -49,21 +50,23 @@ class BraveSearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsRequest
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
return [
ToolDef(
name="web_search",
description="Search the web for information",
parameters=[
ToolParameter(
name="query",
description="The query to search for",
parameter_type="string",
)
],
built_in_type=BuiltinTool.brave_search,
)
]
) -> ListToolDefsResponse:
return ListToolDefsResponse(
data=[
ToolDef(
name="web_search",
description="Search the web for information",
parameters=[
ToolParameter(
name="query",
description="The query to search for",
parameter_type="string",
)
],
built_in_type=BuiltinTool.brave_search,
)
]
)
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
api_key = self._get_api_key()

View file

@ -4,7 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
from urllib.parse import urlparse
from mcp import ClientSession
@ -12,6 +12,7 @@ from mcp.client.sse import sse_client
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.tools import (
ListToolDefsResponse,
ToolDef,
ToolInvocationResult,
ToolParameter,
@ -31,7 +32,7 @@ class ModelContextProtocolToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
) -> ListToolDefsResponse:
if mcp_endpoint is None:
raise ValueError("mcp_endpoint is required")
@ -60,7 +61,7 @@ class ModelContextProtocolToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime):
},
)
)
return tools
return ListToolDefsResponse(data=tools)
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
tool = await self.tool_store.get_tool(tool_name)

View file

@ -5,12 +5,13 @@
# the root directory of this source tree.
import json
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
import httpx
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.tools import (
ListToolDefsResponse,
Tool,
ToolDef,
ToolInvocationResult,
@ -49,20 +50,22 @@ class TavilySearchToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsReques
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
return [
ToolDef(
name="web_search",
description="Search the web for information",
parameters=[
ToolParameter(
name="query",
description="The query to search for",
parameter_type="string",
)
],
)
]
) -> ListToolDefsResponse:
return ListToolDefsResponse(
data=[
ToolDef(
name="web_search",
description="Search the web for information",
parameters=[
ToolParameter(
name="query",
description="The query to search for",
parameter_type="string",
)
],
)
]
)
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
api_key = self._get_api_key()

View file

@ -5,12 +5,13 @@
# the root directory of this source tree.
import json
from typing import Any, Dict, List, Optional
from typing import Any, Dict, Optional
import httpx
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.tools import (
ListToolDefsResponse,
Tool,
ToolDef,
ToolInvocationResult,
@ -50,20 +51,22 @@ class WolframAlphaToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, NeedsReques
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
return [
ToolDef(
name="wolfram_alpha",
description="Query WolframAlpha for computational knowledge",
parameters=[
ToolParameter(
name="query",
description="The query to compute",
parameter_type="string",
)
],
)
]
) -> ListToolDefsResponse:
return ListToolDefsResponse(
data=[
ToolDef(
name="wolfram_alpha",
description="Query WolframAlpha for computational knowledge",
parameters=[
ToolParameter(
name="query",
description="The query to compute",
parameter_type="string",
)
],
)
]
)
async def invoke_tool(self, tool_name: str, kwargs: Dict[str, Any]) -> ToolInvocationResult:
api_key = self._get_api_key()