Move tool_runtime.memory -> tool_runtime.rag

This commit is contained in:
Ashwin Bharambe 2025-01-22 20:25:02 -08:00
parent f3d8864c36
commit 0bff6e1658
5 changed files with 7 additions and 7 deletions

View file

@ -0,0 +1,177 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import logging
import secrets
import string
from typing import Any, Dict, List, Optional
from llama_stack.apis.common.content_types import (
InterleavedContent,
TextContentItem,
URL,
)
from llama_stack.apis.inference import Inference
from llama_stack.apis.tools import (
RAGDocument,
RAGQueryConfig,
RAGQueryResult,
RAGToolRuntime,
ToolDef,
ToolInvocationResult,
ToolRuntime,
)
from llama_stack.apis.vector_io import QueryChunksResponse, VectorIO
from llama_stack.providers.datatypes import ToolsProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import (
content_from_doc,
make_overlapped_chunks,
)
from .config import RagToolRuntimeConfig
from .context_retriever import generate_rag_query
log = logging.getLogger(__name__)
def make_random_string(length: int = 8):
return "".join(
secrets.choice(string.ascii_letters + string.digits) for _ in range(length)
)
class MemoryToolRuntimeImpl(ToolsProtocolPrivate, ToolRuntime, RAGToolRuntime):
def __init__(
self,
config: RagToolRuntimeConfig,
vector_io_api: VectorIO,
inference_api: Inference,
):
self.config = config
self.vector_io_api = vector_io_api
self.inference_api = inference_api
async def initialize(self):
pass
async def shutdown(self):
pass
async def insert(
self,
documents: List[RAGDocument],
vector_db_id: str,
chunk_size_in_tokens: int = 512,
) -> None:
chunks = []
for doc in documents:
content = await content_from_doc(doc)
chunks.extend(
make_overlapped_chunks(
doc.document_id,
content,
chunk_size_in_tokens,
chunk_size_in_tokens // 4,
)
)
if not chunks:
return
await self.vector_io_api.insert_chunks(
chunks=chunks,
vector_db_id=vector_db_id,
)
async def query(
self,
content: InterleavedContent,
vector_db_ids: List[str],
query_config: Optional[RAGQueryConfig] = None,
) -> RAGQueryResult:
if not vector_db_ids:
return RAGQueryResult(content=None)
query_config = query_config or RAGQueryConfig()
query = await generate_rag_query(
query_config.query_generator_config,
content,
inference_api=self.inference_api,
)
tasks = [
self.vector_io_api.query_chunks(
vector_db_id=vector_db_id,
query=query,
params={
"max_chunks": query_config.max_chunks,
},
)
for vector_db_id in vector_db_ids
]
results: List[QueryChunksResponse] = await asyncio.gather(*tasks)
chunks = [c for r in results for c in r.chunks]
scores = [s for r in results for s in r.scores]
if not chunks:
return RAGQueryResult(content=None)
# sort by score
chunks, scores = zip(
*sorted(zip(chunks, scores), key=lambda x: x[1], reverse=True)
)
tokens = 0
picked = []
for c in chunks[: query_config.max_chunks]:
metadata = c.metadata
tokens += metadata["token_count"]
if tokens > query_config.max_tokens_in_context:
log.error(
f"Using {len(picked)} chunks; reached max tokens in context: {tokens}",
)
break
picked.append(
TextContentItem(
text=f"id:{metadata['document_id']}; content:{c.content}",
)
)
return RAGQueryResult(
content=[
TextContentItem(
text="Here are the retrieved documents for relevant context:\n=== START-RETRIEVED-CONTEXT ===\n",
),
*picked,
TextContentItem(
text="\n=== END-RETRIEVED-CONTEXT ===\n",
),
],
)
async def list_runtime_tools(
self, tool_group_id: Optional[str] = None, mcp_endpoint: Optional[URL] = None
) -> List[ToolDef]:
# Parameters are not listed since these methods are not yet invoked automatically
# by the LLM. The method is only implemented so things like /tools can list without
# encountering fatals.
return [
ToolDef(
name="query_from_memory",
description="Retrieve context from memory",
),
ToolDef(
name="insert_into_memory",
description="Insert documents into memory",
),
]
async def invoke_tool(
self, tool_name: str, kwargs: Dict[str, Any]
) -> ToolInvocationResult:
raise RuntimeError(
"This toolgroup should not be called generically but only through specific methods of the RAGToolRuntime protocol"
)