chore: fix mypy violations in post_training modules (#1548)

# What does this PR do?

Fixes a bunch of violations.

Note: this patch touches all files but post_training.py that will be
significantly changed by #1437, hence leaving it out of the picture for
now.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Testing with https://github.com/meta-llama/llama-stack/pull/1543

Also checked that GPU training works with the change:

```
INFO:     ::1:53316 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 200 OK
INFO:     ::1:53316 - "GET /v1/post-training/job/status?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
INFO:     ::1:53316 - "GET /v1/post-training/job/artifacts?job_uuid=test-jobb5ca2d84-d541-42f8-883b-762828b4c0e7 HTTP/1.1" 200 OK
21:24:01.161 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (32526.75ms)
 21:23:28.769 [DEBUG] Setting manual seed to local seed 3918872849. Local seed is seed + rank = 3918872849 + 0
 21:23:28.996 [INFO] Identified model_type = Llama3_2. Ignoring output.weight in checkpoint in favor of the tok_embedding.weight tied weights.
 21:23:29.933 [INFO] Memory stats after model init:
        GPU peak memory allocation: 6.05 GiB
        GPU peak memory reserved: 6.10 GiB
        GPU peak memory active: 6.05 GiB
 21:23:29.934 [INFO] Model is initialized with precision torch.bfloat16.
 21:23:30.115 [INFO] Tokenizer is initialized.
 21:23:30.118 [INFO] Optimizer is initialized.
 21:23:30.119 [INFO] Loss is initialized.
 21:23:30.896 [INFO] Dataset and Sampler are initialized.
 21:23:30.898 [INFO] Learning rate scheduler is initialized.
 21:23:31.618 [INFO] Memory stats after model init:
        GPU peak memory allocation: 6.24 GiB
        GPU peak memory reserved: 6.30 GiB
        GPU peak memory active: 6.24 GiB
 21:23:31.620 [INFO] Starting checkpoint save...
 21:23:59.428 [INFO] Model checkpoint of size 6.43 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/consolidated.00.pth
 21:23:59.445 [INFO] Adapter checkpoint of size 0.00 GB saved to /home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0/adapter/adapter.pth

```

[//]: # (## Documentation)

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
This commit is contained in:
Ihar Hrachyshka 2025-03-18 17:58:16 -04:00 committed by GitHub
parent f86f3cf878
commit 0cbb7f7f21
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 56 additions and 69 deletions

View file

@ -37,10 +37,10 @@ from llama_stack.apis.common.training_types import PostTrainingMetric
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.post_training import (
AlgorithmConfig,
Checkpoint,
LoraFinetuningConfig,
OptimizerConfig,
QATFinetuningConfig,
TrainingConfig,
)
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
@ -73,6 +73,9 @@ class LoraFinetuningSingleDevice:
# Currently logging only logs limited training metrics to local disk
# will figure out more loggings and how it works with telemetry in future PRs
_checkpointer: TorchtuneCheckpointer
def __init__(
self,
config: TorchtunePostTrainingConfig,
@ -82,7 +85,7 @@ class LoraFinetuningSingleDevice:
logger_config: Dict[str, Any],
model: str,
checkpoint_dir: Optional[str],
algorithm_config: Optional[AlgorithmConfig],
algorithm_config: LoraFinetuningConfig | QATFinetuningConfig | None,
datasetio_api: DatasetIO,
datasets_api: Datasets,
) -> None:
@ -109,12 +112,12 @@ class LoraFinetuningSingleDevice:
return str(checkpoint_dir)
if checkpoint_dir and checkpoint_dir != "null":
self.checkpoint_dir = config.checkpoint_dir
self.checkpoint_dir = checkpoint_dir
else:
model = resolve_model(self.model_id)
if model is None:
model_obj = resolve_model(self.model_id)
if model_obj is None:
raise ValueError(f"{self.model_id} not found. Your model id should be in the llama models SKU list")
self.checkpoint_dir = model_checkpoint_dir(model)
self.checkpoint_dir = model_checkpoint_dir(model_obj)
self._output_dir = str(DEFAULT_CHECKPOINT_DIR)
self._checkpoint_format = config.checkpoint_format
@ -135,16 +138,16 @@ class LoraFinetuningSingleDevice:
self.max_validation_steps = training_config.max_validation_steps
self._clip_grad_norm = 1.0
self._enable_activation_checkpointing = (
(training_config.efficiency_config.enable_activation_checkpointing)
if training_config.efficiency_config
else False
)
self._enable_activation_offloading = (
(training_config.efficiency_config.enable_activation_offloading)
if training_config.efficiency_config
else False
)
self._enable_activation_checkpointing = False
self._enable_activation_offloading = False
if training_config.efficiency_config:
if training_config.efficiency_config.enable_activation_checkpointing:
self._enable_activation_checkpointing = (
training_config.efficiency_config.enable_activation_checkpointing
)
if training_config.efficiency_config.enable_activation_offloading:
self._enable_activation_offloading = training_config.efficiency_config.enable_activation_offloading
self.datasetio_api = datasetio_api
self.datasets_api = datasets_api
@ -451,12 +454,12 @@ class LoraFinetuningSingleDevice:
"""
# Initialize tokens count and running loss (for grad accumulation)
t0 = time.perf_counter()
running_loss = 0
running_loss: float = 0.0
num_tokens = 0
# training artifacts
checkpoints = []
memory_stats = {}
memory_stats: Dict[str, Any] = {}
# self.epochs_run should be non-zero when we're resuming from a checkpoint
for curr_epoch in range(self.epochs_run, self.total_epochs):
@ -484,7 +487,7 @@ class LoraFinetuningSingleDevice:
# Loss is normalized by default so we multiply by the number of tokens
# This way we can normalize by the total number of tokens if we're accumulating gradients
current_loss = await self._loss_step(batch) * current_num_tokens
running_loss += current_loss
running_loss += current_loss.detach().item()
current_loss.backward()
# Step with optimizer
@ -500,7 +503,7 @@ class LoraFinetuningSingleDevice:
# Update the number of steps when the weights are updated
self.global_step += 1
loss_to_log = running_loss.item() / num_tokens
loss_to_log = running_loss / num_tokens
pbar.update(1)
pbar.set_description(f"{curr_epoch + 1}|{self.global_step}|Loss: {loss_to_log}")
@ -523,7 +526,7 @@ class LoraFinetuningSingleDevice:
)
# Reset running stats for the next step
running_loss = 0
running_loss = 0.0
num_tokens = 0
t0 = time.perf_counter()