forked from phoenix-oss/llama-stack-mirror
fix: Default to port 8321 everywhere (#1734)
As titled, moved all instances of 5001 to 8321
This commit is contained in:
parent
581e8ae562
commit
127bac6869
56 changed files with 2352 additions and 2305 deletions
|
@ -58,7 +58,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -75,7 +75,7 @@ docker run \
|
|||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
|
|
@ -28,7 +28,7 @@ The `llamastack/distribution-bedrock` distribution consists of the following pro
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
|
||||
### Models
|
||||
|
||||
|
@ -53,7 +53,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -20,7 +20,7 @@ The `llamastack/distribution-cerebras` distribution consists of the following pr
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `CEREBRAS_API_KEY`: Cerebras API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
@ -45,7 +45,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -62,6 +62,6 @@ docker run \
|
|||
```bash
|
||||
llama stack build --template cerebras --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
|
||||
```
|
||||
|
|
|
@ -30,7 +30,7 @@ The `llamastack/distribution-fireworks` distribution consists of the following p
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `FIREWORKS_API_KEY`: Fireworks.AI API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
@ -63,7 +63,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -30,7 +30,7 @@ The `llamastack/distribution-groq` distribution consists of the following provid
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `GROQ_API_KEY`: Groq API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
@ -58,7 +58,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -32,7 +32,7 @@ Note that you need access to nvidia GPUs to run this distribution. This distribu
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the Meta Reference server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `INFERENCE_CHECKPOINT_DIR`: Directory containing the Meta Reference model checkpoint (default: `null`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
@ -77,7 +77,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -109,7 +109,7 @@ Make sure you have done `uv pip install llama-stack` and have the Llama Stack CL
|
|||
```bash
|
||||
llama stack build --template meta-reference-gpu --image-type conda
|
||||
llama stack run distributions/meta-reference-gpu/run.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
|
@ -117,7 +117,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
|
||||
```bash
|
||||
llama stack run distributions/meta-reference-gpu/run-with-safety.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
|
|
@ -34,7 +34,7 @@ Note that you need access to nvidia GPUs to run this distribution. This distribu
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the Meta Reference server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `INFERENCE_CHECKPOINT_DIR`: Directory containing the Meta Reference model checkpoint (default: `null`)
|
||||
|
||||
|
@ -77,7 +77,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -15,7 +15,7 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
@ -39,7 +39,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -56,6 +56,6 @@ docker run \
|
|||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
||||
```
|
||||
|
|
|
@ -32,7 +32,7 @@ You should use this distribution if you have a regular desktop machine without v
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
|
@ -71,7 +71,7 @@ Now you are ready to run Llama Stack with Ollama as the inference provider. You
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -109,7 +109,7 @@ docker run \
|
|||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
llama stack build --template ollama --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
|
|
|
@ -30,7 +30,7 @@ The `llamastack/distribution-passthrough` distribution consists of the following
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `PASSTHROUGH_API_KEY`: Passthrough API Key (default: ``)
|
||||
- `PASSTHROUGH_URL`: Passthrough URL (default: ``)
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@ You can use this distribution if you have GPUs and want to run an independent vL
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the vLLM server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `VLLM_URL`: URL of the vLLM server with the main inference model (default: `http://host.docker.internal:5100/v1`)
|
||||
- `MAX_TOKENS`: Maximum number of tokens for generation (default: `4096`)
|
||||
|
@ -96,7 +96,7 @@ This method allows you to get started quickly without having to build the distri
|
|||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
|
@ -143,7 +143,7 @@ Make sure you have done `uv pip install llama-stack` and have the Llama Stack CL
|
|||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
cd distributions/remote-vllm
|
||||
llama stack build --template remote-vllm --image-type conda
|
||||
|
|
|
@ -27,7 +27,7 @@ The `llamastack/distribution-sambanova` distribution consists of the following p
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `SAMBANOVA_API_KEY`: SambaNova.AI API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
@ -59,7 +59,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -33,7 +33,7 @@ You can use this distribution if you have GPUs and want to run an independent TG
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://127.0.0.1:8080/v1`)
|
||||
- `TGI_SAFETY_URL`: URL of the TGI server with the safety model (default: `http://127.0.0.1:8081/v1`)
|
||||
|
@ -92,7 +92,7 @@ Now you are ready to run Llama Stack with TGI as the inference provider. You can
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -30,7 +30,7 @@ The `llamastack/distribution-together` distribution consists of the following pr
|
|||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
|
||||
- `TOGETHER_API_KEY`: Together.AI API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
@ -64,7 +64,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue