forked from phoenix-oss/llama-stack-mirror
fix: Default to port 8321 everywhere (#1734)
As titled, moved all instances of 5001 to 8321
This commit is contained in:
parent
581e8ae562
commit
127bac6869
56 changed files with 2352 additions and 2305 deletions
|
@ -9,7 +9,11 @@ from pathlib import Path
|
|||
from llama_stack.distribution.datatypes import Provider, ToolGroupInput
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.bedrock.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -76,7 +80,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
},
|
||||
|
|
|
@ -47,7 +47,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -14,7 +14,11 @@ from llama_stack.providers.inline.inference.sentence_transformers import (
|
|||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.cerebras import CerebrasImplConfig
|
||||
from llama_stack.providers.remote.inference.cerebras.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -100,7 +104,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"CEREBRAS_API_KEY": (
|
||||
|
|
|
@ -39,7 +39,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -56,6 +56,6 @@ docker run \
|
|||
```bash
|
||||
llama stack build --template cerebras --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
|
||||
```
|
||||
|
|
|
@ -15,10 +15,16 @@ from llama_stack.distribution.datatypes import (
|
|||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
|
||||
SQLiteVectorIOConfig,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.fireworks.config import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.fireworks.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -104,7 +110,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"FIREWORKS_API_KEY": (
|
||||
|
|
|
@ -16,20 +16,38 @@ from llama_stack.distribution.datatypes import (
|
|||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.config import SQLiteVectorIOConfig
|
||||
from llama_stack.providers.inline.vector_io.sqlite_vec.config import (
|
||||
SQLiteVectorIOConfig,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.anthropic.config import AnthropicConfig
|
||||
from llama_stack.providers.remote.inference.anthropic.models import MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.inference.anthropic.models import (
|
||||
MODEL_ENTRIES as ANTHROPIC_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.fireworks.config import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.fireworks.models import MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.inference.fireworks.models import (
|
||||
MODEL_ENTRIES as FIREWORKS_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.gemini.config import GeminiConfig
|
||||
from llama_stack.providers.remote.inference.gemini.models import MODEL_ENTRIES as GEMINI_MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.inference.gemini.models import (
|
||||
MODEL_ENTRIES as GEMINI_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
||||
from llama_stack.providers.remote.inference.groq.models import MODEL_ENTRIES as GROQ_MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.inference.groq.models import (
|
||||
MODEL_ENTRIES as GROQ_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
||||
from llama_stack.providers.remote.inference.openai.models import MODEL_ENTRIES as OPENAI_MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.inference.openai.models import (
|
||||
MODEL_ENTRIES as OPENAI_MODEL_ENTRIES,
|
||||
)
|
||||
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
||||
from llama_stack.providers.remote.vector_io.pgvector.config import PGVectorVectorIOConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
||||
PGVectorVectorIOConfig,
|
||||
)
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_inference_providers() -> Tuple[List[Provider], List[ModelInput]]:
|
||||
|
@ -168,7 +186,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"FIREWORKS_API_KEY": (
|
||||
|
|
|
@ -49,7 +49,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -19,7 +19,11 @@ from llama_stack.providers.inline.inference.sentence_transformers import (
|
|||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.fireworks.config import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.fireworks.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -158,7 +162,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"FIREWORKS_API_KEY": (
|
||||
|
|
|
@ -49,7 +49,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -7,17 +7,17 @@
|
|||
from pathlib import Path
|
||||
|
||||
from llama_stack.apis.models.models import ModelType
|
||||
from llama_stack.distribution.datatypes import (
|
||||
ModelInput,
|
||||
Provider,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ToolGroupInput
|
||||
from llama_stack.providers.inline.inference.sentence_transformers import (
|
||||
SentenceTransformersInferenceConfig,
|
||||
)
|
||||
from llama_stack.providers.remote.inference.groq import GroqConfig
|
||||
from llama_stack.providers.remote.inference.groq.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -97,7 +97,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"GROQ_API_KEY": (
|
||||
|
|
|
@ -127,7 +127,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"HF_API_TOKEN": (
|
||||
|
|
|
@ -128,7 +128,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"HF_API_TOKEN": (
|
||||
|
|
|
@ -65,7 +65,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -97,7 +97,7 @@ Make sure you have done `uv pip install llama-stack` and have the Llama Stack CL
|
|||
```bash
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
llama stack run distributions/{{ name }}/run.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
```
|
||||
|
||||
|
@ -105,7 +105,7 @@ If you are using Llama Stack Safety / Shield APIs, use:
|
|||
|
||||
```bash
|
||||
llama stack run distributions/{{ name }}/run-with-safety.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
|
||||
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
||||
```
|
||||
|
|
|
@ -134,7 +134,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
|
|
|
@ -67,7 +67,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -100,7 +100,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
|
|
|
@ -39,7 +39,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -56,7 +56,7 @@ docker run \
|
|||
```bash
|
||||
llama stack build --template nvidia --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port 5001 \
|
||||
--port 8321 \
|
||||
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
||||
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
||||
```
|
||||
|
|
|
@ -60,7 +60,7 @@ Now you are ready to run Llama Stack with Ollama as the inference provider. You
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
@ -98,7 +98,7 @@ docker run \
|
|||
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
|
||||
|
||||
```bash
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
|
|
|
@ -138,7 +138,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"OLLAMA_URL": (
|
||||
|
|
|
@ -279,7 +279,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"TOGETHER_API_KEY": (
|
||||
|
|
|
@ -21,10 +21,7 @@ from llama_stack.providers.remote.inference.passthrough.config import (
|
|||
PassthroughImplConfig,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
)
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -186,7 +183,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"PASSTHROUGH_API_KEY": (
|
||||
|
|
|
@ -83,7 +83,7 @@ This method allows you to get started quickly without having to build the distri
|
|||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
docker run \
|
||||
-it \
|
||||
|
@ -130,7 +130,7 @@ Make sure you have done `uv pip install llama-stack` and have the Llama Stack CL
|
|||
```bash
|
||||
export INFERENCE_PORT=8000
|
||||
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
|
||||
export LLAMA_STACK_PORT=5001
|
||||
export LLAMA_STACK_PORT=8321
|
||||
|
||||
cd distributions/remote-vllm
|
||||
llama stack build --template remote-vllm --image-type conda
|
||||
|
|
|
@ -135,7 +135,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
|
|
|
@ -49,7 +49,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -6,17 +6,19 @@
|
|||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import (
|
||||
Provider,
|
||||
ShieldInput,
|
||||
ToolGroupInput,
|
||||
)
|
||||
from llama_stack.distribution.datatypes import Provider, ShieldInput, ToolGroupInput
|
||||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.sambanova import SambaNovaImplConfig
|
||||
from llama_stack.providers.remote.inference.sambanova.models import MODEL_ENTRIES
|
||||
from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOConfig
|
||||
from llama_stack.providers.remote.vector_io.pgvector.config import PGVectorVectorIOConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.providers.remote.vector_io.pgvector.config import (
|
||||
PGVectorVectorIOConfig,
|
||||
)
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -105,7 +107,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"SAMBANOVA_API_KEY": (
|
||||
|
|
|
@ -80,7 +80,7 @@ Now you are ready to run Llama Stack with TGI as the inference provider. You can
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -129,7 +129,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
|
|
|
@ -49,7 +49,7 @@ You can do this via Conda (build code) or Docker which has a pre-built image.
|
|||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
LLAMA_STACK_PORT=8321
|
||||
docker run \
|
||||
-it \
|
||||
--pull always \
|
||||
|
|
|
@ -19,7 +19,11 @@ from llama_stack.providers.inline.inference.sentence_transformers import (
|
|||
from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig
|
||||
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
||||
from llama_stack.providers.remote.inference.together.models import MODEL_ENTRIES
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
||||
from llama_stack.templates.template import (
|
||||
DistributionTemplate,
|
||||
RunConfigSettings,
|
||||
get_model_registry,
|
||||
)
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
|
@ -154,7 +158,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"TOGETHER_API_KEY": (
|
||||
|
|
|
@ -100,7 +100,7 @@ def get_distribution_template() -> DistributionTemplate:
|
|||
},
|
||||
run_config_env_vars={
|
||||
"LLAMA_STACK_PORT": (
|
||||
"5001",
|
||||
"8321",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue