[llama stack ui] add native eval & inspect distro & playground pages (#541)

# What does this PR do?

New Pages Added: 

- (1) Inspect Distro
- (2) Evaluations: 
  - (a) native evaluations (including generation)
  - (b) application evaluations (no generation, scoring only)
- (3) Playground: 
  - (a) chat
  - (b) RAG  

## Test Plan

```
streamlit run app.py
```

#### Playground

https://github.com/user-attachments/assets/6ca617e8-32ca-49b2-9774-185020ff5204

#### Inspect

https://github.com/user-attachments/assets/01d52b2d-92af-4e3a-b623-a9b8ba22ba99


#### Evaluations (Generation + Scoring)

https://github.com/user-attachments/assets/345845c7-2a2b-4095-960a-9ae40f6a93cf

#### Evaluations (Scoring)

https://github.com/user-attachments/assets/6cc1659f-eba4-49ca-a0a5-7c243557b4f5


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2024-12-04 09:47:09 -08:00 committed by GitHub
parent caf1dac114
commit 16769256b7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 1000 additions and 166 deletions

View file

@ -0,0 +1,123 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
# Sidebar configurations
with st.sidebar:
st.header("Configuration")
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=1,
help="The maximum number of tokens to generate",
)
repetition_penalty = st.slider(
"Repetition Penalty",
min_value=1.0,
max_value=2.0,
value=1.0,
step=0.1,
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
stream = st.checkbox("Stream", value=True)
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful AI assistant.",
help="Initial instructions given to the AI to set its behavior and context",
)
# Add clear chat button to sidebar
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Main chat interface
st.title("🦙 Chat")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Example: What is Llama Stack?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
response = llama_stack_api.client.inference.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
model_id=selected_model,
stream=stream,
sampling_params={
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
)
if stream:
for chunk in response:
if chunk.event.event_type == "progress":
full_response += chunk.event.delta
message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response)
else:
full_response = response
message_placeholder.markdown(full_response.completion_message.content)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)