docs: Adding Provider sections to docs (#1195)

# What does this PR do?
Adding Provider sections to docs (some of these will be empty and need
updating).


This PR is still a draft while I seek feedback from other contributors.
I opened it to make the structure visible in the linked GitHub Issue.

# Closes https://github.com/meta-llama/llama-stack/issues/1189

- Providers Overview Page
![Screenshot 2025-02-21 at 12 15
09 PM](https://github.com/user-attachments/assets/e83e5a17-0d96-4de0-8251-68161799a054)

- SQLite-Vec specific page
![Screenshot 2025-02-21 at 12 15
34 PM](https://github.com/user-attachments/assets/14773900-fc8f-49e9-832a-b060b7ca010a)

## Test Plan
N/A

[//]: # (## Documentation)

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
Francisco Arceo 2025-02-22 12:59:34 -07:00 committed by GitHub
parent b890d7a611
commit 19ae4b35d9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 260 additions and 2 deletions

View file

@ -0,0 +1,36 @@
---
orphan: true
---
# Chroma
[Chroma](https://www.trychroma.com/) is an inline and remote vector
database provider for Llama Stack. It allows you to store and query vectors directly within a Chroma database.
That means you're not limited to storing vectors in memory or in a separate service.
## Features
Chroma supports:
- Store embeddings and their metadata
- Vector search
- Full-text search
- Document storage
- Metadata filtering
- Multi-modal retrieval
## Usage
To use Chrome in your Llama Stack project, follow these steps:
1. Install the necessary dependencies.
2. Configure your Llama Stack project to use chroma.
3. Start storing and querying vectors.
## Installation
You can install chroma using pip:
```bash
pip install chromadb
```
## Documentation
See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introduction) for more details about Chroma in general.