[memory refactor][3/n] Introduce RAGToolRuntime as a specialized sub-protocol (#832)

See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Third part:
- we need to make `tool_runtime.rag_tool.query_context()` and
`tool_runtime.rag_tool.insert_documents()` methods work smoothly with
complete type safety. To that end, we introduce a sub-resource path
`tool-runtime/rag-tool/` and make changes to the resolver to make things
work.
- the PR updates the agents implementation to directly call these typed
APIs for memory accesses rather than going through the complex, untyped
"invoke_tool" API. the code looks much nicer and simpler (expectedly.)
- there are a number of hacks in the server resolver implementation
still, we will live with some and fix some

Note that we must make sure the client SDKs are able to handle this
subresource complexity also. Stainless has support for subresources, so
this should be possible but beware.

## Test Plan

Our RAG test is sad (doesn't actually test for actual RAG output) but I
verified that the implementation works. I will work on fixing the RAG
test afterwards.

```bash
pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B
```
This commit is contained in:
Ashwin Bharambe 2025-01-22 10:04:16 -08:00 committed by GitHub
parent 78a481bb22
commit 1a7490470a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
33 changed files with 1648 additions and 1345 deletions

View file

@ -59,13 +59,18 @@ from llama_stack.apis.inference import (
ToolResponseMessage,
UserMessage,
)
from llama_stack.apis.memory import Memory, MemoryBankDocument
from llama_stack.apis.memory_banks import MemoryBanks, VectorMemoryBankParams
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ToolGroups, ToolRuntime
from llama_stack.apis.tools import (
DefaultRAGQueryGeneratorConfig,
RAGDocument,
RAGQueryConfig,
ToolGroups,
ToolRuntime,
)
from llama_stack.apis.vector_io import VectorIO
from llama_stack.providers.utils.kvstore import KVStore
from llama_stack.providers.utils.memory.vector_store import concat_interleaved_content
from llama_stack.providers.utils.telemetry import tracing
from .persistence import AgentPersistence
from .safety import SafetyException, ShieldRunnerMixin
@ -79,7 +84,7 @@ def make_random_string(length: int = 8):
TOOLS_ATTACHMENT_KEY_REGEX = re.compile(r"__tools_attachment__=(\{.*?\})")
MEMORY_QUERY_TOOL = "query_memory"
MEMORY_QUERY_TOOL = "rag_tool.query_context"
WEB_SEARCH_TOOL = "web_search"
MEMORY_GROUP = "builtin::memory"
@ -91,20 +96,18 @@ class ChatAgent(ShieldRunnerMixin):
agent_config: AgentConfig,
tempdir: str,
inference_api: Inference,
memory_api: Memory,
memory_banks_api: MemoryBanks,
safety_api: Safety,
tool_runtime_api: ToolRuntime,
tool_groups_api: ToolGroups,
vector_io_api: VectorIO,
persistence_store: KVStore,
):
self.agent_id = agent_id
self.agent_config = agent_config
self.tempdir = tempdir
self.inference_api = inference_api
self.memory_api = memory_api
self.memory_banks_api = memory_banks_api
self.safety_api = safety_api
self.vector_io_api = vector_io_api
self.storage = AgentPersistence(agent_id, persistence_store)
self.tool_runtime_api = tool_runtime_api
self.tool_groups_api = tool_groups_api
@ -370,24 +373,30 @@ class ChatAgent(ShieldRunnerMixin):
documents: Optional[List[Document]] = None,
toolgroups_for_turn: Optional[List[AgentToolGroup]] = None,
) -> AsyncGenerator:
# TODO: simplify all of this code, it can be simpler
toolgroup_args = {}
toolgroups = set()
for toolgroup in self.agent_config.toolgroups:
if isinstance(toolgroup, AgentToolGroupWithArgs):
toolgroups.add(toolgroup.name)
toolgroup_args[toolgroup.name] = toolgroup.args
else:
toolgroups.add(toolgroup)
if toolgroups_for_turn:
for toolgroup in toolgroups_for_turn:
if isinstance(toolgroup, AgentToolGroupWithArgs):
toolgroups.add(toolgroup.name)
toolgroup_args[toolgroup.name] = toolgroup.args
else:
toolgroups.add(toolgroup)
tool_defs, tool_to_group = await self._get_tool_defs(toolgroups_for_turn)
if documents:
await self.handle_documents(
session_id, documents, input_messages, tool_defs
)
if MEMORY_QUERY_TOOL in tool_defs and len(input_messages) > 0:
memory_tool_group = tool_to_group.get(MEMORY_QUERY_TOOL, None)
if memory_tool_group is None:
raise ValueError(f"Memory tool group not found for {MEMORY_QUERY_TOOL}")
if MEMORY_GROUP in toolgroups and len(input_messages) > 0:
with tracing.span(MEMORY_QUERY_TOOL) as span:
step_id = str(uuid.uuid4())
yield AgentTurnResponseStreamChunk(
@ -398,17 +407,15 @@ class ChatAgent(ShieldRunnerMixin):
)
)
)
query_args = {
"messages": [msg.content for msg in input_messages],
**toolgroup_args.get(memory_tool_group, {}),
}
args = toolgroup_args.get(MEMORY_GROUP, {})
vector_db_ids = args.get("vector_db_ids", [])
session_info = await self.storage.get_session_info(session_id)
# if the session has a memory bank id, let the memory tool use it
if session_info.memory_bank_id:
if "memory_bank_ids" not in query_args:
query_args["memory_bank_ids"] = []
query_args["memory_bank_ids"].append(session_info.memory_bank_id)
vector_db_ids.append(session_info.memory_bank_id)
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
payload=AgentTurnResponseStepProgressPayload(
@ -425,10 +432,18 @@ class ChatAgent(ShieldRunnerMixin):
)
)
)
result = await self.tool_runtime_api.invoke_tool(
tool_name=MEMORY_QUERY_TOOL,
args=query_args,
result = await self.tool_runtime_api.rag_tool.query_context(
content=concat_interleaved_content(
[msg.content for msg in input_messages]
),
query_config=RAGQueryConfig(
query_generator_config=DefaultRAGQueryGeneratorConfig(),
max_tokens_in_context=4096,
max_chunks=5,
),
vector_db_ids=vector_db_ids,
)
retrieved_context = result.content
yield AgentTurnResponseStreamChunk(
event=AgentTurnResponseEvent(
@ -449,7 +464,7 @@ class ChatAgent(ShieldRunnerMixin):
ToolResponse(
call_id="",
tool_name=MEMORY_QUERY_TOOL,
content=result.content,
content=retrieved_context or [],
)
],
),
@ -459,13 +474,11 @@ class ChatAgent(ShieldRunnerMixin):
span.set_attribute(
"input", [m.model_dump_json() for m in input_messages]
)
span.set_attribute("output", result.content)
span.set_attribute("error_code", result.error_code)
span.set_attribute("error_message", result.error_message)
span.set_attribute("output", retrieved_context)
span.set_attribute("tool_name", MEMORY_QUERY_TOOL)
if result.error_code == 0:
if retrieved_context:
last_message = input_messages[-1]
last_message.context = result.content
last_message.context = retrieved_context
output_attachments = []
@ -842,12 +855,13 @@ class ChatAgent(ShieldRunnerMixin):
if session_info.memory_bank_id is None:
bank_id = f"memory_bank_{session_id}"
await self.memory_banks_api.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model="all-MiniLM-L6-v2",
chunk_size_in_tokens=512,
),
# TODO: the semantic for registration is definitely not "creation"
# so we need to fix it if we expect the agent to create a new vector db
# for each session
await self.vector_io_api.register_vector_db(
vector_db_id=bank_id,
embedding_model="all-MiniLM-L6-v2",
)
await self.storage.add_memory_bank_to_session(session_id, bank_id)
else:
@ -858,9 +872,9 @@ class ChatAgent(ShieldRunnerMixin):
async def add_to_session_memory_bank(
self, session_id: str, data: List[Document]
) -> None:
bank_id = await self._ensure_memory_bank(session_id)
vector_db_id = await self._ensure_memory_bank(session_id)
documents = [
MemoryBankDocument(
RAGDocument(
document_id=str(uuid.uuid4()),
content=a.content,
mime_type=a.mime_type,
@ -868,9 +882,10 @@ class ChatAgent(ShieldRunnerMixin):
)
for a in data
]
await self.memory_api.insert_documents(
bank_id=bank_id,
await self.tool_runtime_api.rag_tool.insert_documents(
documents=documents,
vector_db_id=vector_db_id,
chunk_size_in_tokens=512,
)
@ -955,7 +970,7 @@ async def execute_tool_call_maybe(
result = await tool_runtime_api.invoke_tool(
tool_name=name,
args=dict(
kwargs=dict(
session_id=session_id,
**tool_call_args,
),