forked from phoenix-oss/llama-stack-mirror
[memory refactor][3/n] Introduce RAGToolRuntime as a specialized sub-protocol (#832)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. Third part: - we need to make `tool_runtime.rag_tool.query_context()` and `tool_runtime.rag_tool.insert_documents()` methods work smoothly with complete type safety. To that end, we introduce a sub-resource path `tool-runtime/rag-tool/` and make changes to the resolver to make things work. - the PR updates the agents implementation to directly call these typed APIs for memory accesses rather than going through the complex, untyped "invoke_tool" API. the code looks much nicer and simpler (expectedly.) - there are a number of hacks in the server resolver implementation still, we will live with some and fix some Note that we must make sure the client SDKs are able to handle this subresource complexity also. Stainless has support for subresources, so this should be possible but beware. ## Test Plan Our RAG test is sad (doesn't actually test for actual RAG output) but I verified that the implementation works. I will work on fixing the RAG test afterwards. ```bash pytest -s -v tests/agents/test_agents.py -k "rag and together" --safety-shield=meta-llama/Llama-Guard-3-8B ```
This commit is contained in:
parent
78a481bb22
commit
1a7490470a
33 changed files with 1648 additions and 1345 deletions
|
@ -19,7 +19,6 @@ import numpy as np
|
|||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from pypdf import PdfReader
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
|
@ -27,6 +26,7 @@ from llama_stack.apis.common.content_types import (
|
|||
TextContentItem,
|
||||
URL,
|
||||
)
|
||||
from llama_stack.apis.tools import RAGDocument
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse
|
||||
from llama_stack.providers.datatypes import Api
|
||||
|
@ -34,17 +34,9 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MemoryBankDocument(BaseModel):
|
||||
document_id: str
|
||||
content: InterleavedContent | URL
|
||||
mime_type: str | None = None
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
def parse_pdf(data: bytes) -> str:
|
||||
# For PDF and DOC/DOCX files, we can't reliably convert to string
|
||||
pdf_bytes = io.BytesIO(data)
|
||||
|
@ -122,7 +114,7 @@ def concat_interleaved_content(content: List[InterleavedContent]) -> Interleaved
|
|||
return ret
|
||||
|
||||
|
||||
async def content_from_doc(doc: MemoryBankDocument) -> str:
|
||||
async def content_from_doc(doc: RAGDocument) -> str:
|
||||
if isinstance(doc.content, URL):
|
||||
if doc.content.uri.startswith("data:"):
|
||||
return content_from_data(doc.content.uri)
|
||||
|
@ -161,7 +153,13 @@ def make_overlapped_chunks(
|
|||
chunk = tokenizer.decode(toks)
|
||||
# chunk is a string
|
||||
chunks.append(
|
||||
Chunk(content=chunk, token_count=len(toks), document_id=document_id)
|
||||
Chunk(
|
||||
content=chunk,
|
||||
metadata={
|
||||
"token_count": len(toks),
|
||||
"document_id": document_id,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
return chunks
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue