diff --git a/docs/getting_started.ipynb b/docs/getting_started.ipynb index 21436327e..4ac8ad3a5 100644 --- a/docs/getting_started.ipynb +++ b/docs/getting_started.ipynb @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 18, "id": "E1UFuJC570Tk", "metadata": { "colab": { @@ -326,54 +326,108 @@ " type: sqlite\n", "models:\n", "- metadata: {}\n", + " model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-3.1-8B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n", "- metadata: {}\n", + " model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-3.1-70B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n", "- metadata: {}\n", + " model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-3.1-405B-Instruct-FP8\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n", "- metadata: {}\n", + " model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-3.2-3B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n", "- metadata: {}\n", + " model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-3.2-11B-Vision-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n", "- metadata: {}\n", + " model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-3.2-90B-Vision-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n", "- metadata: {}\n", + " model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-3.3-70B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n", "- metadata: {}\n", + " model_id: meta-llama/Meta-Llama-Guard-3-8B\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-Guard-3-8B\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n", "- metadata: {}\n", + " model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n", + "- metadata: {}\n", " model_id: meta-llama/Llama-Guard-3-11B-Vision\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", @@ -473,6 +527,9 @@ " - config: {}\n", " provider_id: model-context-protocol\n", " provider_type: remote::model-context-protocol\n", + " - config: {}\n", + " provider_id: wolfram-alpha\n", + " provider_type: remote::wolfram-alpha\n", " vector_io:\n", " - config:\n", " kvstore:\n", @@ -504,6 +561,10 @@ " mcp_endpoint: null\n", " provider_id: code-interpreter\n", " toolgroup_id: builtin::code_interpreter\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: wolfram-alpha\n", + " toolgroup_id: builtin::wolfram_alpha\n", "vector_dbs: []\n", "version: '2'\n", "\n", @@ -530,54 +591,108 @@ " type: sqlite\n", "models:\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", " provider_id: together\n", " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n", " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", " - llm\n", @@ -677,6 +792,9 @@ " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", " provider_id: model-context-protocol\n", " provider_type: remote::model-context-protocol\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: wolfram-alpha\n", + " provider_type: remote::wolfram-alpha\n", " vector_io:\n", " - config:\n", " kvstore:\n", @@ -708,6 +826,10 @@ " mcp_endpoint: null\n", " provider_id: code-interpreter\n", " toolgroup_id: builtin::code_interpreter\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: wolfram-alpha\n", + " toolgroup_id: builtin::wolfram_alpha\n", "vector_dbs: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", "version: \u001b[32m'2'\u001b[0m\n", "\n" @@ -4098,7 +4220,7 @@ "source": [ "## 4. Image Understanding with Llama 3.2\n", "\n", - "Below is a complete example of using Together's Llama Stack 0.1 server at https://llama-stack.together.ai to ask Llama 3.2 questions about an image." + "Below is a complete example of to ask Llama 3.2 questions about an image." ] }, { @@ -4106,14 +4228,12 @@ "id": "82e381ec", "metadata": {}, "source": [ - "### 4.1 Setup and helpers\n", - "\n", - "Below we install the Llama Stack client 0.1, download the example image, define two image helpers, and set Llama Stack Together server URL and Llama 3.2 model name.\n" + "### 4.1 Setup and helpers\n" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "44e05e16", "metadata": {}, "outputs": [ @@ -4123,7 +4243,7 @@ "text": [ " % Total % Received % Xferd Average Speed Time Time Time Current\n", " Dload Upload Total Spent Left Speed\n", - "100 275k 100 275k 0 0 780k 0 --:--:-- --:--:-- --:--:-- 780k\n" + "100 275k 100 275k 0 0 905k 0 --:--:-- --:--:-- --:--:-- 906k\n" ] } ], @@ -4133,32 +4253,13 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "469750f7", - "metadata": {}, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "from PIL import Image\n", - "import matplotlib.pyplot as plt\n", - "\n", - "def display_image(path):\n", - " img = Image.open(path)\n", - " plt.imshow(img)\n", - " plt.axis('off')\n", - " plt.show()\n", - "\n", - "display_image(\"Llama_Repo.jpeg\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "execution_count": 20, "id": "a2c1e1c2", "metadata": {}, "outputs": [], "source": [ "import base64\n", + "vision_model_id = \"meta-llama/Llama-3.2-11B-Vision-Instruct\"\n", "\n", "def encode_image(image_path):\n", " with open(image_path, \"rb\") as image_file:\n", @@ -4167,19 +4268,6 @@ " return base64_url" ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "c565f99e", - "metadata": {}, - "outputs": [], - "source": [ - "from llama_stack_client import LlamaStackClient\n", - "\n", - "LLAMA_STACK_API_TOGETHER_URL=\"https://llama-stack.together.ai\"\n", - "LLAMA32_11B_INSTRUCT = \"meta-llama/Llama-3.2-11B-Vision-Instruct\"" - ] - }, { "cell_type": "markdown", "id": "7737cd41", @@ -4192,55 +4280,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "id": "d7914894", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are three llamas in the image. The llama in the middle is purple, the llama on the left is white, and the llama on the right is also white, but it is wearing a blue party hat. Therefore, there are two different colors of llama in the image: purple and white.\n" + ] + } + ], "source": [ - "from llama_stack_client.lib.inference.event_logger import EventLogger\n", - "\n", - "async def run_main(image_path: str, prompt):\n", - " client = LlamaStackClient(\n", - " base_url=LLAMA_STACK_API_TOGETHER_URL,\n", - " )\n", - "\n", - " message = {\n", - " \"role\": \"user\",\n", - " \"content\": [\n", - " {\n", - " \"type\": \"image\",\n", - " \"image\": {\n", - " \"url\": {\n", - " \"uri\": encode_image(image_path)\n", - " }\n", + "response = client.inference.chat_completion(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\n", + " \"type\": \"image\",\n", + " \"image\": {\n", + " \"url\": {\n", + " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", + " }\n", + " }\n", + " },\n", + " {\n", + " \"type\": \"text\",\n", + " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", " }\n", - " },\n", - " {\n", - " \"type\": \"text\",\n", - " \"text\": prompt,\n", - " }\n", - " ]\n", - " }\n", + " ]\n", + " }\n", + " ],\n", + " model_id=vision_model_id,\n", + " stream=False,\n", + ")\n", "\n", - " response = client.inference.chat_completion(\n", - " messages=[message],\n", - " model_id=LLAMA32_11B_INSTRUCT,\n", - " stream=False,\n", - " )\n", - "\n", - " print(response.completion_message.content.lower().strip())" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4ee09b97", - "metadata": {}, - "outputs": [], - "source": [ - "await run_main(\"Llama_Repo.jpeg\",\n", - " \"How many different colors are those llamas?\\\n", - " What are those colors?\")" + "print(response.completion_message.content)" ] }, { @@ -4255,68 +4332,65 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "id": "f9a83275", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33minference> \u001b[0m\u001b[33mThere\u001b[0m\u001b[33m are\u001b[0m\u001b[33m three\u001b[0m\u001b[33m different\u001b[0m\u001b[33m colors\u001b[0m\u001b[33m of\u001b[0m\u001b[33m ll\u001b[0m\u001b[33mamas\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m image\u001b[0m\u001b[33m.\u001b[0m\u001b[33m The\u001b[0m\u001b[33m first\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m on\u001b[0m\u001b[33m the\u001b[0m\u001b[33m left\u001b[0m\u001b[33m is\u001b[0m\u001b[33m white\u001b[0m\u001b[33m,\u001b[0m\u001b[33m the\u001b[0m\u001b[33m second\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m middle\u001b[0m\u001b[33m is\u001b[0m\u001b[33m purple\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m the\u001b[0m\u001b[33m third\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m on\u001b[0m\u001b[33m the\u001b[0m\u001b[33m right\u001b[0m\u001b[33m is\u001b[0m\u001b[33m white\u001b[0m\u001b[33m with\u001b[0m\u001b[33m a\u001b[0m\u001b[33m blue\u001b[0m\u001b[33m party\u001b[0m\u001b[33m hat\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m" + ] + } + ], "source": [ - "from llama_stack_client.lib.agents.agent import Agent\n", - "from llama_stack_client.lib.agents.event_logger import EventLogger\n", "from llama_stack_client.types.agent_create_params import AgentConfig\n", "\n", - "async def run_main(image_path, prompt):\n", - " base64_image = encode_image(image_path)\n", + "agent_config = AgentConfig(\n", + " model=vision_model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " enable_session_persistence=False,\n", + " toolgroups=[],\n", + ")\n", "\n", - " client = LlamaStackClient(\n", - " base_url=LLAMA_STACK_API_TOGETHER_URL,\n", - " )\n", + "agent = Agent(client, agent_config)\n", + "session_id = agent.create_session(\"test-session\")\n", "\n", - " agent_config = AgentConfig(\n", - " model=LLAMA32_11B_INSTRUCT,\n", - " instructions=\"You are a helpful assistant\",\n", - " enable_session_persistence=False,\n", - " toolgroups=[],\n", - " )\n", - "\n", - " agent = Agent(client, agent_config)\n", - " session_id = agent.create_session(\"test-session\")\n", - "\n", - " response = agent.create_turn(\n", - " messages=[{\n", - " \"role\": \"user\",\n", - " \"content\": [\n", - " {\n", - " \"type\": \"image\",\n", - " \"image\": {\n", - " \"url\": {\n", - " \"uri\": encode_image(image_path)\n", - " }\n", - " }\n", - " },\n", - " {\n", - " \"type\": \"text\",\n", - " \"text\": prompt,\n", + "response = agent.create_turn(\n", + " messages=[{\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\n", + " \"type\": \"image\",\n", + " \"image\": {\n", + " \"url\": {\n", + " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", + " }\n", " }\n", - " ]\n", - " }],\n", - " session_id=session_id,\n", - " )\n", + " },\n", + " {\n", + " \"type\": \"text\",\n", + " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", + " }\n", + " ]\n", + " }],\n", + " session_id=session_id,\n", + ")\n", "\n", - " for log in EventLogger().log(response):\n", - " log.print()" + "for log in EventLogger().log(response):\n", + " log.print()\n", + " " ] }, { "cell_type": "code", "execution_count": null, - "id": "15d0098b", + "id": "f3352379", "metadata": {}, "outputs": [], - "source": [ - "await run_main(\"Llama_Repo.jpeg\",\n", - " \"How many different colors are those llamas?\\\n", - " What are those colors?\")" - ] + "source": [] } ], "metadata": {