feat: Add watsonx inference adapter (#1895)

# What does this PR do?
IBM watsonx ai added as the inference [#1741
](https://github.com/meta-llama/llama-stack/issues/1741)

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

---------

Co-authored-by: Sajikumar JS <sajikumar.js@ibm.com>
This commit is contained in:
Sajikumar JS 2025-04-25 23:59:21 +05:30 committed by GitHub
parent 29072f40ab
commit 1bb1d9b2ba
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 922 additions and 0 deletions

View file

@ -0,0 +1,260 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional, Union
from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
completion_request_to_prompt,
request_has_media,
)
from . import WatsonXConfig
from .models import MODEL_ENTRIES
class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
def __init__(self, config: WatsonXConfig) -> None:
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
print(f"Initializing watsonx InferenceAdapter({config.url})...")
self._config = config
self._project_id = self._config.project_id
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = CompletionRequest(
model=model.provider_resource_id,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
def _get_client(self, model_id) -> Model:
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
config_url = self._config.url
project_id = self._config.project_id
credentials = {"url": config_url, "apikey": config_api_key}
return Model(model_id=model_id, credentials=credentials, project_id=project_id)
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
r = self._get_client(request.model).generate(**params)
choices = []
if "results" in r:
for result in r["results"]:
choice = OpenAICompatCompletionChoice(
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
text=result["generated_text"],
)
choices.append(choice)
response = OpenAICompatCompletionResponse(
choices=choices,
)
return process_completion_response(response)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
async def _generate_and_convert_to_openai_compat():
s = self._get_client(request.model).generate_text_stream(**params)
for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=None,
text=chunk,
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream):
yield chunk
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
params = await self._get_params(request)
r = self._get_client(request.model).generate(**params)
choices = []
if "results" in r:
for result in r["results"]:
choice = OpenAICompatCompletionChoice(
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
text=result["generated_text"],
)
choices.append(choice)
response = OpenAICompatCompletionResponse(
choices=choices,
)
return process_chat_completion_response(response, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
params = await self._get_params(request)
model_id = request.model
# if we shift to TogetherAsyncClient, we won't need this wrapper
async def _to_async_generator():
s = self._get_client(model_id).generate_text_stream(**params)
for chunk in s:
choice = OpenAICompatCompletionChoice(
finish_reason=None,
text=chunk,
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
input_dict = {"params": {}}
media_present = request_has_media(request)
llama_model = self.get_llama_model(request.model)
if isinstance(request, ChatCompletionRequest):
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
else:
assert not media_present, "Together does not support media for Completion requests"
input_dict["prompt"] = await completion_request_to_prompt(request)
if request.sampling_params:
if request.sampling_params.strategy:
input_dict["params"][GenParams.DECODING_METHOD] = request.sampling_params.strategy.type
if request.sampling_params.max_tokens:
input_dict["params"][GenParams.MAX_NEW_TOKENS] = request.sampling_params.max_tokens
if request.sampling_params.repetition_penalty:
input_dict["params"][GenParams.REPETITION_PENALTY] = request.sampling_params.repetition_penalty
if request.sampling_params.additional_params.get("top_p"):
input_dict["params"][GenParams.TOP_P] = request.sampling_params.additional_params["top_p"]
if request.sampling_params.additional_params.get("top_k"):
input_dict["params"][GenParams.TOP_K] = request.sampling_params.additional_params["top_k"]
if request.sampling_params.additional_params.get("temperature"):
input_dict["params"][GenParams.TEMPERATURE] = request.sampling_params.additional_params["temperature"]
if request.sampling_params.additional_params.get("length_penalty"):
input_dict["params"][GenParams.LENGTH_PENALTY] = request.sampling_params.additional_params[
"length_penalty"
]
if request.sampling_params.additional_params.get("random_seed"):
input_dict["params"][GenParams.RANDOM_SEED] = request.sampling_params.additional_params["random_seed"]
if request.sampling_params.additional_params.get("min_new_tokens"):
input_dict["params"][GenParams.MIN_NEW_TOKENS] = request.sampling_params.additional_params[
"min_new_tokens"
]
if request.sampling_params.additional_params.get("stop_sequences"):
input_dict["params"][GenParams.STOP_SEQUENCES] = request.sampling_params.additional_params[
"stop_sequences"
]
if request.sampling_params.additional_params.get("time_limit"):
input_dict["params"][GenParams.TIME_LIMIT] = request.sampling_params.additional_params["time_limit"]
if request.sampling_params.additional_params.get("truncate_input_tokens"):
input_dict["params"][GenParams.TRUNCATE_INPUT_TOKENS] = request.sampling_params.additional_params[
"truncate_input_tokens"
]
if request.sampling_params.additional_params.get("return_options"):
input_dict["params"][GenParams.RETURN_OPTIONS] = request.sampling_params.additional_params[
"return_options"
]
params = {
**input_dict,
}
return params
async def embeddings(
self,
model_id: str,
contents: List[str] | List[InterleavedContentItem],
text_truncation: Optional[TextTruncation] = TextTruncation.none,
output_dimension: Optional[int] = None,
task_type: Optional[EmbeddingTaskType] = None,
) -> EmbeddingsResponse:
pass