diff --git a/llama_toolchain/inference/adapters/tgi/__init__.py b/llama_toolchain/inference/adapters/tgi/__init__.py new file mode 100644 index 000000000..4940667b4 --- /dev/null +++ b/llama_toolchain/inference/adapters/tgi/__init__.py @@ -0,0 +1,15 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from llama_toolchain.core.datatypes import RemoteProviderConfig + + +async def get_adapter_impl(config: RemoteProviderConfig, _deps): + from .tgi import TGIInferenceAdapter + + impl = TGIInferenceAdapter(config.url) + await impl.initialize() + return impl diff --git a/llama_toolchain/inference/adapters/tgi/tgi.py b/llama_toolchain/inference/adapters/tgi/tgi.py new file mode 100644 index 000000000..7eb36ac36 --- /dev/null +++ b/llama_toolchain/inference/adapters/tgi/tgi.py @@ -0,0 +1,233 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from typing import AsyncGenerator, List + +import httpx + +from llama_models.llama3.api.chat_format import ChatFormat + +from llama_models.llama3.api.datatypes import Message, StopReason +from llama_models.llama3.api.tokenizer import Tokenizer + +from text_generation import Client + +from llama_toolchain.inference.api import * # noqa: F403 +from llama_toolchain.inference.prepare_messages import prepare_messages + + +SUPPORTED_MODELS = { + "Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct", + "Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", + "Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct", +} + + +class TGIInferenceAdapter(Inference): + def __init__(self, url: str) -> None: + self.url = url.rstrip("/") + self.tokenizer = Tokenizer.get_instance() + self.formatter = ChatFormat(self.tokenizer) + self.model = None + self.max_tokens = None + + async def initialize(self) -> None: + hf_models = {v: k for k, v in SUPPORTED_MODELS.items()} + + try: + print(f"Connecting to TGI server at: {self.url}") + async with httpx.AsyncClient() as client: + response = await client.get(f"{self.url}/info") + response.raise_for_status() + info = response.json() + if "model_id" not in info: + raise RuntimeError("Missing model_id in model info") + if "max_total_tokens" not in info: + raise RuntimeError("Missing max_total_tokens in model info") + self.max_tokens = info["max_total_tokens"] + + model_id = info["model_id"] + if model_id not in hf_models: + raise RuntimeError( + f"TGI is serving model: {model_id}, use one of the supported models: {','.join(hf_models.keys())}" + ) + + self.model = hf_models[model_id] + except Exception as e: + import traceback + + traceback.print_exc() + raise RuntimeError("Could not connect to TGI server") from e + + async def shutdown(self) -> None: + pass + + async def completion(self, request: CompletionRequest) -> AsyncGenerator: + raise NotImplementedError() + + def _convert_messages(self, messages: List[Message]) -> List[Message]: + ret = [] + for message in messages: + if message.role == "ipython": + role = "tool" + else: + role = message.role + ret.append({"role": role, "content": message.content}) + return ret + + def get_chat_options(self, request: ChatCompletionRequest) -> dict: + options = {} + if request.sampling_params is not None: + for attr in {"temperature", "top_p", "top_k", "max_tokens"}: + if getattr(request.sampling_params, attr): + options[attr] = getattr(request.sampling_params, attr) + + return options + + async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: + messages = prepare_messages(request) + + model_input = self.formatter.encode_dialog_prompt(messages) + prompt = self.tokenizer.decode(model_input.tokens) + max_new_tokens = min( + request.sampling_params.max_tokens or self.max_tokens, + self.max_tokens - len(model_input.tokens) - 1, + ) + + if request.model != self.model: + raise ValueError( + f"Model mismatch, expected: {self.model}, got: {request.model}" + ) + + options = self.get_chat_options(request) + + client = Client(base_url=self.url) + if not request.stream: + r = client.generate( + prompt, + max_new_tokens=max_new_tokens, + stop_sequences=["<|eom_id|>", "<|eot_id|>"], + **options, + ) + + if r.details.finish_reason: + if r.details.finish_reason == "stop": + stop_reason = StopReason.end_of_turn + elif r.details.finish_reason == "length": + stop_reason = StopReason.out_of_tokens + else: + stop_reason = StopReason.end_of_message + else: + stop_reason = StopReason.out_of_tokens + + completion_message = self.formatter.decode_assistant_message_from_content( + r.generated_text, stop_reason + ) + yield ChatCompletionResponse( + completion_message=completion_message, + logprobs=None, + ) + else: + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.start, + delta="", + ) + ) + + buffer = "" + ipython = False + stop_reason = None + tokens = [] + + for response in client.generate_stream( + prompt, + max_new_tokens=max_new_tokens, + stop_sequences=["<|eom_id|>", "<|eot_id|>"], + **options, + ): + token_result = response.token + + buffer += token_result.text + tokens.append(token_result.id) + + if not ipython and buffer.startswith("<|python_tag|>"): + ipython = True + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=ToolCallDelta( + content="", + parse_status=ToolCallParseStatus.started, + ), + ) + ) + buffer = buffer[len("<|python_tag|>") :] + continue + + if token_result.text == "<|eot_id|>": + stop_reason = StopReason.end_of_turn + text = "" + elif token_result.text == "<|eom_id|>": + stop_reason = StopReason.end_of_message + text = "" + else: + text = token_result.text + + if ipython: + delta = ToolCallDelta( + content=text, + parse_status=ToolCallParseStatus.in_progress, + ) + else: + delta = text + + if stop_reason is None: + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=delta, + stop_reason=stop_reason, + ) + ) + + if stop_reason is None: + stop_reason = StopReason.out_of_tokens + + # parse tool calls and report errors + message = self.formatter.decode_assistant_message(tokens, stop_reason) + parsed_tool_calls = len(message.tool_calls) > 0 + if ipython and not parsed_tool_calls: + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=ToolCallDelta( + content="", + parse_status=ToolCallParseStatus.failure, + ), + stop_reason=stop_reason, + ) + ) + + for tool_call in message.tool_calls: + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.progress, + delta=ToolCallDelta( + content=tool_call, + parse_status=ToolCallParseStatus.success, + ), + stop_reason=stop_reason, + ) + ) + + yield ChatCompletionResponseStreamChunk( + event=ChatCompletionResponseEvent( + event_type=ChatCompletionResponseEventType.complete, + delta="", + stop_reason=stop_reason, + ) + ) diff --git a/llama_toolchain/inference/providers.py b/llama_toolchain/inference/providers.py index 772114b41..b469cb29b 100644 --- a/llama_toolchain/inference/providers.py +++ b/llama_toolchain/inference/providers.py @@ -35,6 +35,14 @@ def available_inference_providers() -> List[ProviderSpec]: module="llama_toolchain.inference.adapters.ollama", ), ), + remote_provider_spec( + api=Api.inference, + adapter=AdapterSpec( + adapter_id="tgi", + pip_packages=["text-generation"], + module="llama_toolchain.inference.adapters.tgi", + ), + ), remote_provider_spec( api=Api.inference, adapter=AdapterSpec(