forked from phoenix-oss/llama-stack-mirror
Sambanova inference provider (#555)
# What does this PR do? This PR adds SambaNova as one of the Provider - Add SambaNova as a provider ## Test Plan Test the functional command ``` pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py llama_stack/providers/tests/inference/test_prompt_adapter.py llama_stack/providers/tests/inference/test_text_inference.py llama_stack/providers/tests/inference/test_vision_inference.py --env SAMBANOVA_API_KEY=<sambanova-api-key> ``` Test the distribution template: ``` # Docker LLAMA_STACK_PORT=5001 docker run -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ llamastack/distribution-sambanova \ --port $LLAMA_STACK_PORT \ --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY # Conda llama stack build --template sambanova --image-type conda llama stack run ./run.yaml \ --port $LLAMA_STACK_PORT \ --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY ``` ## Source [SambaNova API Documentation](https://cloud.sambanova.ai/apis) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [Y] Ran pre-commit to handle lint / formatting issues. - [Y] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [Y] Updated relevant documentation. - [Y ] Wrote necessary unit or integration tests. --------- Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
e2b5456e48
commit
22dc684da6
20 changed files with 870 additions and 2 deletions
19
distributions/sambanova/build.yaml
Normal file
19
distributions/sambanova/build.yaml
Normal file
|
@ -0,0 +1,19 @@
|
|||
version: '2'
|
||||
name: sambanova
|
||||
distribution_spec:
|
||||
description: Use SambaNova.AI for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference:
|
||||
- remote::sambanova
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
16
distributions/sambanova/compose.yaml
Normal file
16
distributions/sambanova/compose.yaml
Normal file
|
@ -0,0 +1,16 @@
|
|||
services:
|
||||
llamastack:
|
||||
image: llamastack/distribution-sambanova
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
- ./run.yaml:/root/llamastack-run-sambanova.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
entrypoint: bash -c "python -m llama_stack.distribution.server.server --yaml_config /root/llamastack-run-sambanova.yaml"
|
||||
deploy:
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
83
distributions/sambanova/run.yaml
Normal file
83
distributions/sambanova/run.yaml
Normal file
|
@ -0,0 +1,83 @@
|
|||
version: '2'
|
||||
image_name: sambanova
|
||||
docker_image: null
|
||||
conda_env: sambanova
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: sambanova
|
||||
provider_type: remote::sambanova
|
||||
config:
|
||||
url: https://api.sambanova.ai/v1/
|
||||
api_key: ${env.SAMBANOVA_API_KEY}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.1-8B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.1-70B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.1-405B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-1B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.2-1B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-3B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.2-3B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Llama-3.2-11B-Vision-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Llama-3.2-90B-Vision-Instruct
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: meta-llama/Llama-Guard-3-8B
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
|
@ -24,7 +24,7 @@ We are working on adding a few more APIs to complete the application lifecycle.
|
|||
## API Providers
|
||||
|
||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Obvious examples for these include
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, etc.),
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, SambaNova, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, etc.),
|
||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||
|
||||
|
|
74
docs/source/distributions/self_hosted_distro/sambanova.md
Normal file
74
docs/source/distributions/self_hosted_distro/sambanova.md
Normal file
|
@ -0,0 +1,74 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# SambaNova Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-sambanova` distribution consists of the following provider configurations.
|
||||
|
||||
| API | Provider(s) |
|
||||
|-----|-------------|
|
||||
| agents | `inline::meta-reference` |
|
||||
| inference | `remote::sambanova` |
|
||||
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
||||
| safety | `inline::llama-guard` |
|
||||
| telemetry | `inline::meta-reference` |
|
||||
|
||||
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `SAMBANOVA_API_KEY`: SambaNova.AI API Key (default: ``)
|
||||
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
- `meta-llama/Llama-3.1-8B-Instruct`
|
||||
- `meta-llama/Llama-3.1-70B-Instruct`
|
||||
- `meta-llama/Llama-3.1-405B-Instruct`
|
||||
- `meta-llama/Llama-3.2-1B-Instruct`
|
||||
- `meta-llama/Llama-3.2-3B-Instruct`
|
||||
- `meta-llama/Llama-3.2-11B-Vision-Instruct`
|
||||
- `meta-llama/Llama-3.2-90B-Vision-Instruct`
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaBova.ai](https://sambanova.ai/).
|
||||
|
||||
|
||||
## Running Llama Stack with SambaNova
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-sambanova \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template sambanova --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
|
||||
```
|
|
@ -40,6 +40,7 @@ A number of "adapters" are available for some popular Inference and Memory (Vect
|
|||
| Fireworks | Hosted | Y | Y | Y | | |
|
||||
| AWS Bedrock | Hosted | | Y | | Y | |
|
||||
| Together | Hosted | Y | Y | | Y | |
|
||||
| SambaNova | Hosted | | Y | | | |
|
||||
| Ollama | Single Node | | Y | | |
|
||||
| TGI | Hosted and Single Node | | Y | | |
|
||||
| NVIDIA NIM | Hosted and Single Node | | Y | | |
|
||||
|
|
|
@ -18,6 +18,7 @@ class LlamaStackApi:
|
|||
provider_data={
|
||||
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY", ""),
|
||||
"together_api_key": os.environ.get("TOGETHER_API_KEY", ""),
|
||||
"sambanova_api_key": os.environ.get("SAMBANOVA_API_KEY", ""),
|
||||
"openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
|
||||
},
|
||||
)
|
||||
|
|
|
@ -204,4 +204,15 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.adapters.inference.runpod.RunpodImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="sambanova",
|
||||
pip_packages=[
|
||||
"openai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.sambanova",
|
||||
config_class="llama_stack.providers.remote.inference.sambanova.SambaNovaImplConfig",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
23
llama_stack/providers/remote/inference/sambanova/__init__.py
Normal file
23
llama_stack/providers/remote/inference/sambanova/__init__.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from .config import SambaNovaImplConfig
|
||||
from .sambanova import SambaNovaInferenceAdapter
|
||||
|
||||
|
||||
class SambaNovaProviderDataValidator(BaseModel):
|
||||
sambanova_api_key: str
|
||||
|
||||
|
||||
async def get_adapter_impl(config: SambaNovaImplConfig, _deps):
|
||||
assert isinstance(
|
||||
config, SambaNovaImplConfig
|
||||
), f"Unexpected config type: {type(config)}"
|
||||
impl = SambaNovaInferenceAdapter(config)
|
||||
await impl.initialize()
|
||||
return impl
|
29
llama_stack/providers/remote/inference/sambanova/config.py
Normal file
29
llama_stack/providers/remote/inference/sambanova/config.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class SambaNovaImplConfig(BaseModel):
|
||||
url: str = Field(
|
||||
default="https://api.sambanova.ai/v1",
|
||||
description="The URL for the SambaNova AI server",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default=None,
|
||||
description="The SambaNova.ai API Key",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls) -> Dict[str, Any]:
|
||||
return {
|
||||
"url": "https://api.sambanova.ai/v1",
|
||||
"api_key": "${env.SAMBANOVA_API_KEY}",
|
||||
}
|
333
llama_stack/providers/remote/inference/sambanova/sambanova.py
Normal file
333
llama_stack/providers/remote/inference/sambanova/sambanova.py
Normal file
|
@ -0,0 +1,333 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from llama_models.datatypes import CoreModelId, SamplingStrategy
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
InterleavedContent,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_image_content_to_url,
|
||||
)
|
||||
|
||||
from .config import SambaNovaImplConfig
|
||||
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.1-8B-Instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.1-70B-Instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.1-405B-Instruct",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.2-1B-Instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.2-3B-Instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Llama-3.2-11B-Vision-Instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Llama-3.2-90B-Vision-Instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class SambaNovaInferenceAdapter(ModelRegistryHelper, Inference):
|
||||
def __init__(self, config: SambaNovaImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
model_aliases=MODEL_ALIASES,
|
||||
)
|
||||
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self) -> OpenAI:
|
||||
return OpenAI(base_url=self.config.url, api_key=self.config.api_key)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
request_sambanova = await self.convert_chat_completion_request(request)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request_sambanova)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request_sambanova)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
response = self._get_client().chat.completions.create(**request)
|
||||
|
||||
choice = response.choices[0]
|
||||
|
||||
result = ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=choice.message.content or "",
|
||||
stop_reason=self.convert_to_sambanova_finish_reason(
|
||||
choice.finish_reason
|
||||
),
|
||||
tool_calls=self.convert_to_sambanova_tool_calls(
|
||||
choice.message.tool_calls
|
||||
),
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
async def _to_async_generator():
|
||||
streaming = self._get_client().chat.completions.create(**request)
|
||||
for chunk in streaming:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def convert_chat_completion_request(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> dict:
|
||||
compatible_request = self.convert_sampling_params(request.sampling_params)
|
||||
compatible_request["model"] = request.model
|
||||
compatible_request["messages"] = await self.convert_to_sambanova_messages(
|
||||
request.messages
|
||||
)
|
||||
compatible_request["stream"] = request.stream
|
||||
compatible_request["logprobs"] = False
|
||||
compatible_request["extra_headers"] = {
|
||||
b"User-Agent": b"llama-stack: sambanova-inference-adapter",
|
||||
}
|
||||
compatible_request["tools"] = self.convert_to_sambanova_tool(request.tools)
|
||||
return compatible_request
|
||||
|
||||
def convert_sampling_params(
|
||||
self, sampling_params: SamplingParams, legacy: bool = False
|
||||
) -> dict:
|
||||
params = {}
|
||||
|
||||
if sampling_params:
|
||||
params["frequency_penalty"] = sampling_params.repetition_penalty
|
||||
|
||||
if sampling_params.max_tokens:
|
||||
if legacy:
|
||||
params["max_tokens"] = sampling_params.max_tokens
|
||||
else:
|
||||
params["max_completion_tokens"] = sampling_params.max_tokens
|
||||
|
||||
if sampling_params.strategy == SamplingStrategy.top_p:
|
||||
params["top_p"] = sampling_params.top_p
|
||||
elif sampling_params.strategy == "top_k":
|
||||
params["extra_body"]["top_k"] = sampling_params.top_k
|
||||
elif sampling_params.strategy == "greedy":
|
||||
params["temperature"] = sampling_params.temperature
|
||||
|
||||
return params
|
||||
|
||||
async def convert_to_sambanova_messages(
|
||||
self, messages: List[Message]
|
||||
) -> List[dict]:
|
||||
conversation = []
|
||||
for message in messages:
|
||||
content = {}
|
||||
|
||||
content["content"] = await self.convert_to_sambanova_content(message)
|
||||
|
||||
if isinstance(message, UserMessage):
|
||||
content["role"] = "user"
|
||||
elif isinstance(message, CompletionMessage):
|
||||
content["role"] = "assistant"
|
||||
tools = []
|
||||
for tool_call in message.tool_calls:
|
||||
tools.append(
|
||||
{
|
||||
"id": tool_call.call_id,
|
||||
"function": {
|
||||
"name": tool_call.name,
|
||||
"arguments": json.dumps(tool_call.arguments),
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
)
|
||||
content["tool_calls"] = tools
|
||||
elif isinstance(message, ToolResponseMessage):
|
||||
content["role"] = "tool"
|
||||
content["tool_call_id"] = message.call_id
|
||||
elif isinstance(message, SystemMessage):
|
||||
content["role"] = "system"
|
||||
|
||||
conversation.append(content)
|
||||
|
||||
return conversation
|
||||
|
||||
async def convert_to_sambanova_content(self, message: Message) -> dict:
|
||||
async def _convert_content(content) -> dict:
|
||||
if isinstance(content, ImageContentItem):
|
||||
url = await convert_image_content_to_url(content, download=True)
|
||||
# A fix to make sure the call sucess.
|
||||
components = url.split(";base64")
|
||||
url = f"{components[0].lower()};base64{components[1]}"
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {"url": url},
|
||||
}
|
||||
else:
|
||||
text = content.text if isinstance(content, TextContentItem) else content
|
||||
assert isinstance(text, str)
|
||||
return {"type": "text", "text": text}
|
||||
|
||||
if isinstance(message.content, list):
|
||||
# If it is a list, the text content should be wrapped in dict
|
||||
content = [await _convert_content(c) for c in message.content]
|
||||
else:
|
||||
content = message.content
|
||||
|
||||
return content
|
||||
|
||||
def convert_to_sambanova_tool(self, tools: List[ToolDefinition]) -> List[dict]:
|
||||
if tools is None:
|
||||
return tools
|
||||
|
||||
compatiable_tools = []
|
||||
|
||||
for tool in tools:
|
||||
properties = {}
|
||||
compatiable_required = []
|
||||
if tool.parameters:
|
||||
for tool_key, tool_param in tool.parameters.items():
|
||||
properties[tool_key] = {"type": tool_param.param_type}
|
||||
if tool_param.description:
|
||||
properties[tool_key]["description"] = tool_param.description
|
||||
if tool_param.default:
|
||||
properties[tool_key]["default"] = tool_param.default
|
||||
if tool_param.required:
|
||||
compatiable_required.append(tool_key)
|
||||
|
||||
compatiable_tool = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool.tool_name,
|
||||
"description": tool.description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": compatiable_required,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
compatiable_tools.append(compatiable_tool)
|
||||
|
||||
if len(compatiable_tools) > 0:
|
||||
return compatiable_tools
|
||||
return None
|
||||
|
||||
def convert_to_sambanova_finish_reason(self, finish_reason: str) -> StopReason:
|
||||
return {
|
||||
"stop": StopReason.end_of_turn,
|
||||
"length": StopReason.out_of_tokens,
|
||||
"tool_calls": StopReason.end_of_message,
|
||||
}.get(finish_reason, StopReason.end_of_turn)
|
||||
|
||||
def convert_to_sambanova_tool_calls(
|
||||
self,
|
||||
tool_calls,
|
||||
) -> List[ToolCall]:
|
||||
if not tool_calls:
|
||||
return []
|
||||
|
||||
for call in tool_calls:
|
||||
call_function_arguments = json.loads(call.function.arguments)
|
||||
|
||||
compitable_tool_calls = [
|
||||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=call_function_arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
||||
return compitable_tool_calls
|
|
@ -23,6 +23,7 @@ from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
|
|||
from llama_stack.providers.remote.inference.groq import GroqConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
||||
from llama_stack.providers.remote.inference.sambanova import SambaNovaImplConfig
|
||||
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
|
||||
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
||||
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
|
||||
|
@ -232,6 +233,23 @@ def inference_tgi() -> ProviderFixture:
|
|||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_sambanova() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="sambanova",
|
||||
provider_type="remote::sambanova",
|
||||
config=SambaNovaImplConfig(
|
||||
api_key=get_env_or_fail("SAMBANOVA_API_KEY"),
|
||||
).model_dump(),
|
||||
)
|
||||
],
|
||||
provider_data=dict(
|
||||
sambanova_api_key=get_env_or_fail("SAMBANOVA_API_KEY"),
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def inference_sentence_transformers() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
|
@ -282,6 +300,7 @@ INFERENCE_FIXTURES = [
|
|||
"cerebras",
|
||||
"nvidia",
|
||||
"tgi",
|
||||
"sambanova",
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@ class TestModelRegistration:
|
|||
},
|
||||
)
|
||||
|
||||
with pytest.raises(AssertionError) as exc_info:
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
await models_impl.register_model(
|
||||
model_id="custom-model-2",
|
||||
metadata={
|
||||
|
|
|
@ -385,6 +385,12 @@ class TestInference:
|
|||
# TODO(aidand): Remove this skip once Groq's tool calling for Llama3.2 works better
|
||||
pytest.skip("Groq's tool calling for Llama3.2 doesn't work very well")
|
||||
|
||||
if provider.__provider_spec__.provider_type == "remote::sambanova" and (
|
||||
"-1B-" in inference_model or "-3B-" in inference_model
|
||||
):
|
||||
# TODO(snova-edawrdm): Remove this skip once SambaNova's tool calling for 1B/ 3B
|
||||
pytest.skip("Sambanova's tool calling for lightweight models don't work")
|
||||
|
||||
messages = sample_messages + [
|
||||
UserMessage(
|
||||
content="What's the weather like in San Francisco?",
|
||||
|
@ -431,6 +437,9 @@ class TestInference:
|
|||
):
|
||||
# TODO(aidand): Remove this skip once Groq's tool calling for Llama3.2 works better
|
||||
pytest.skip("Groq's tool calling for Llama3.2 doesn't work very well")
|
||||
if provider.__provider_spec__.provider_type == "remote::sambanova":
|
||||
# TODO(snova-edawrdm): Remove this skip once SambaNova's tool calling under streaming is supported (we are working on it)
|
||||
pytest.skip("Sambanova's tool calling for streaming doesn't work")
|
||||
|
||||
messages = sample_messages + [
|
||||
UserMessage(
|
||||
|
|
|
@ -59,6 +59,7 @@ class TestVisionModelInference:
|
|||
"remote::fireworks",
|
||||
"remote::ollama",
|
||||
"remote::vllm",
|
||||
"remote::sambanova",
|
||||
):
|
||||
pytest.skip(
|
||||
"Other inference providers don't support vision chat completion() yet"
|
||||
|
@ -98,6 +99,7 @@ class TestVisionModelInference:
|
|||
"remote::fireworks",
|
||||
"remote::ollama",
|
||||
"remote::vllm",
|
||||
"remote::sambanova",
|
||||
):
|
||||
pytest.skip(
|
||||
"Other inference providers don't support vision chat completion() yet"
|
||||
|
|
7
llama_stack/templates/sambanova/__init__.py
Normal file
7
llama_stack/templates/sambanova/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .sambanova import get_distribution_template # noqa: F401
|
19
llama_stack/templates/sambanova/build.yaml
Normal file
19
llama_stack/templates/sambanova/build.yaml
Normal file
|
@ -0,0 +1,19 @@
|
|||
version: '2'
|
||||
name: sambanova
|
||||
distribution_spec:
|
||||
description: Use SambaNova.AI for running LLM inference
|
||||
docker_image: null
|
||||
providers:
|
||||
inference:
|
||||
- remote::sambanova
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
68
llama_stack/templates/sambanova/doc_template.md
Normal file
68
llama_stack/templates/sambanova/doc_template.md
Normal file
|
@ -0,0 +1,68 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# SambaNova Distribution
|
||||
|
||||
```{toctree}
|
||||
:maxdepth: 2
|
||||
:hidden:
|
||||
|
||||
self
|
||||
```
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
{% if run_config_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in run_config_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{% if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are available by default:
|
||||
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }} ({{ model.provider_model_id }})`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
### Prerequisite: API Keys
|
||||
|
||||
Make sure you have access to a SambaNova API Key. You can get one by visiting [SambaBova.ai](https://sambanova.ai/).
|
||||
|
||||
|
||||
## Running Llama Stack with SambaNova
|
||||
|
||||
You can do this via Conda (build code) or Docker which has a pre-built image.
|
||||
|
||||
### Via Docker
|
||||
|
||||
This method allows you to get started quickly without having to build the distribution code.
|
||||
|
||||
```bash
|
||||
LLAMA_STACK_PORT=5001
|
||||
docker run \
|
||||
-it \
|
||||
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
|
||||
```
|
||||
|
||||
### Via Conda
|
||||
|
||||
```bash
|
||||
llama stack build --template sambanova --image-type conda
|
||||
llama stack run ./run.yaml \
|
||||
--port $LLAMA_STACK_PORT \
|
||||
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
|
||||
```
|
83
llama_stack/templates/sambanova/run.yaml
Normal file
83
llama_stack/templates/sambanova/run.yaml
Normal file
|
@ -0,0 +1,83 @@
|
|||
version: '2'
|
||||
image_name: sambanova
|
||||
docker_image: null
|
||||
conda_env: sambanova
|
||||
apis:
|
||||
- agents
|
||||
- inference
|
||||
- memory
|
||||
- safety
|
||||
- telemetry
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: sambanova
|
||||
provider_type: remote::sambanova
|
||||
config:
|
||||
url: https://api.sambanova.ai/v1/
|
||||
api_key: ${env.SAMBANOVA_API_KEY}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/sambanova}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-8B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.1-8B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-70B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.1-70B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.1-405B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.1-405B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-1B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.2-1B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-3B-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Meta-Llama-3.2-3B-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-11B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Llama-3.2-11B-Vision-Instruct
|
||||
- metadata: {}
|
||||
model_id: meta-llama/Llama-3.2-90B-Vision-Instruct
|
||||
provider_id: null
|
||||
provider_model_id: Llama-3.2-90B-Vision-Instruct
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: meta-llama/Llama-Guard-3-8B
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
71
llama_stack/templates/sambanova/sambanova.py
Normal file
71
llama_stack/templates/sambanova/sambanova.py
Normal file
|
@ -0,0 +1,71 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_models.sku_list import all_registered_models
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.remote.inference.sambanova import SambaNovaImplConfig
|
||||
from llama_stack.providers.remote.inference.sambanova.sambanova import MODEL_ALIASES
|
||||
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::sambanova"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="sambanova",
|
||||
provider_type="remote::sambanova",
|
||||
config=SambaNovaImplConfig.sample_run_config(),
|
||||
)
|
||||
|
||||
core_model_to_hf_repo = {
|
||||
m.descriptor(): m.huggingface_repo for m in all_registered_models()
|
||||
}
|
||||
default_models = [
|
||||
ModelInput(
|
||||
model_id=core_model_to_hf_repo[m.llama_model],
|
||||
provider_model_id=m.provider_model_id,
|
||||
)
|
||||
for m in MODEL_ALIASES
|
||||
]
|
||||
|
||||
return DistributionTemplate(
|
||||
name="sambanova",
|
||||
distro_type="self_hosted",
|
||||
description="Use SambaNova.AI for running LLM inference",
|
||||
docker_image=None,
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=default_models,
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=default_models,
|
||||
default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")],
|
||||
),
|
||||
},
|
||||
run_config_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"SAMBANOVA_API_KEY": (
|
||||
"",
|
||||
"SambaNova.AI API Key",
|
||||
),
|
||||
},
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue