forked from phoenix-oss/llama-stack-mirror
Sambanova inference provider (#555)
# What does this PR do? This PR adds SambaNova as one of the Provider - Add SambaNova as a provider ## Test Plan Test the functional command ``` pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_embeddings.py llama_stack/providers/tests/inference/test_prompt_adapter.py llama_stack/providers/tests/inference/test_text_inference.py llama_stack/providers/tests/inference/test_vision_inference.py --env SAMBANOVA_API_KEY=<sambanova-api-key> ``` Test the distribution template: ``` # Docker LLAMA_STACK_PORT=5001 docker run -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ llamastack/distribution-sambanova \ --port $LLAMA_STACK_PORT \ --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY # Conda llama stack build --template sambanova --image-type conda llama stack run ./run.yaml \ --port $LLAMA_STACK_PORT \ --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY ``` ## Source [SambaNova API Documentation](https://cloud.sambanova.ai/apis) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [Y] Ran pre-commit to handle lint / formatting issues. - [Y] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [Y] Updated relevant documentation. - [Y ] Wrote necessary unit or integration tests. --------- Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
e2b5456e48
commit
22dc684da6
20 changed files with 870 additions and 2 deletions
333
llama_stack/providers/remote/inference/sambanova/sambanova.py
Normal file
333
llama_stack/providers/remote/inference/sambanova/sambanova.py
Normal file
|
@ -0,0 +1,333 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from llama_models.datatypes import CoreModelId, SamplingStrategy
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import (
|
||||
ImageContentItem,
|
||||
InterleavedContent,
|
||||
TextContentItem,
|
||||
)
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
process_chat_completion_stream_response,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.prompt_adapter import (
|
||||
convert_image_content_to_url,
|
||||
)
|
||||
|
||||
from .config import SambaNovaImplConfig
|
||||
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.1-8B-Instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.1-70B-Instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.1-405B-Instruct",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.2-1B-Instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Meta-Llama-3.2-3B-Instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Llama-3.2-11B-Vision-Instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"Llama-3.2-90B-Vision-Instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class SambaNovaInferenceAdapter(ModelRegistryHelper, Inference):
|
||||
def __init__(self, config: SambaNovaImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self,
|
||||
model_aliases=MODEL_ALIASES,
|
||||
)
|
||||
|
||||
self.config = config
|
||||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self) -> OpenAI:
|
||||
return OpenAI(base_url=self.config.url, api_key=self.config.api_key)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedContent,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
model = await self.model_store.get_model(model_id)
|
||||
|
||||
request = ChatCompletionRequest(
|
||||
model=model.provider_resource_id,
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
tools=tools or [],
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
request_sambanova = await self.convert_chat_completion_request(request)
|
||||
|
||||
if stream:
|
||||
return self._stream_chat_completion(request_sambanova)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request_sambanova)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
response = self._get_client().chat.completions.create(**request)
|
||||
|
||||
choice = response.choices[0]
|
||||
|
||||
result = ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=choice.message.content or "",
|
||||
stop_reason=self.convert_to_sambanova_finish_reason(
|
||||
choice.finish_reason
|
||||
),
|
||||
tool_calls=self.convert_to_sambanova_tool_calls(
|
||||
choice.message.tool_calls
|
||||
),
|
||||
),
|
||||
logprobs=None,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
async def _to_async_generator():
|
||||
streaming = self._get_client().chat.completions.create(**request)
|
||||
for chunk in streaming:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
yield chunk
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedContent],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def convert_chat_completion_request(
|
||||
self, request: ChatCompletionRequest
|
||||
) -> dict:
|
||||
compatible_request = self.convert_sampling_params(request.sampling_params)
|
||||
compatible_request["model"] = request.model
|
||||
compatible_request["messages"] = await self.convert_to_sambanova_messages(
|
||||
request.messages
|
||||
)
|
||||
compatible_request["stream"] = request.stream
|
||||
compatible_request["logprobs"] = False
|
||||
compatible_request["extra_headers"] = {
|
||||
b"User-Agent": b"llama-stack: sambanova-inference-adapter",
|
||||
}
|
||||
compatible_request["tools"] = self.convert_to_sambanova_tool(request.tools)
|
||||
return compatible_request
|
||||
|
||||
def convert_sampling_params(
|
||||
self, sampling_params: SamplingParams, legacy: bool = False
|
||||
) -> dict:
|
||||
params = {}
|
||||
|
||||
if sampling_params:
|
||||
params["frequency_penalty"] = sampling_params.repetition_penalty
|
||||
|
||||
if sampling_params.max_tokens:
|
||||
if legacy:
|
||||
params["max_tokens"] = sampling_params.max_tokens
|
||||
else:
|
||||
params["max_completion_tokens"] = sampling_params.max_tokens
|
||||
|
||||
if sampling_params.strategy == SamplingStrategy.top_p:
|
||||
params["top_p"] = sampling_params.top_p
|
||||
elif sampling_params.strategy == "top_k":
|
||||
params["extra_body"]["top_k"] = sampling_params.top_k
|
||||
elif sampling_params.strategy == "greedy":
|
||||
params["temperature"] = sampling_params.temperature
|
||||
|
||||
return params
|
||||
|
||||
async def convert_to_sambanova_messages(
|
||||
self, messages: List[Message]
|
||||
) -> List[dict]:
|
||||
conversation = []
|
||||
for message in messages:
|
||||
content = {}
|
||||
|
||||
content["content"] = await self.convert_to_sambanova_content(message)
|
||||
|
||||
if isinstance(message, UserMessage):
|
||||
content["role"] = "user"
|
||||
elif isinstance(message, CompletionMessage):
|
||||
content["role"] = "assistant"
|
||||
tools = []
|
||||
for tool_call in message.tool_calls:
|
||||
tools.append(
|
||||
{
|
||||
"id": tool_call.call_id,
|
||||
"function": {
|
||||
"name": tool_call.name,
|
||||
"arguments": json.dumps(tool_call.arguments),
|
||||
},
|
||||
"type": "function",
|
||||
}
|
||||
)
|
||||
content["tool_calls"] = tools
|
||||
elif isinstance(message, ToolResponseMessage):
|
||||
content["role"] = "tool"
|
||||
content["tool_call_id"] = message.call_id
|
||||
elif isinstance(message, SystemMessage):
|
||||
content["role"] = "system"
|
||||
|
||||
conversation.append(content)
|
||||
|
||||
return conversation
|
||||
|
||||
async def convert_to_sambanova_content(self, message: Message) -> dict:
|
||||
async def _convert_content(content) -> dict:
|
||||
if isinstance(content, ImageContentItem):
|
||||
url = await convert_image_content_to_url(content, download=True)
|
||||
# A fix to make sure the call sucess.
|
||||
components = url.split(";base64")
|
||||
url = f"{components[0].lower()};base64{components[1]}"
|
||||
return {
|
||||
"type": "image_url",
|
||||
"image_url": {"url": url},
|
||||
}
|
||||
else:
|
||||
text = content.text if isinstance(content, TextContentItem) else content
|
||||
assert isinstance(text, str)
|
||||
return {"type": "text", "text": text}
|
||||
|
||||
if isinstance(message.content, list):
|
||||
# If it is a list, the text content should be wrapped in dict
|
||||
content = [await _convert_content(c) for c in message.content]
|
||||
else:
|
||||
content = message.content
|
||||
|
||||
return content
|
||||
|
||||
def convert_to_sambanova_tool(self, tools: List[ToolDefinition]) -> List[dict]:
|
||||
if tools is None:
|
||||
return tools
|
||||
|
||||
compatiable_tools = []
|
||||
|
||||
for tool in tools:
|
||||
properties = {}
|
||||
compatiable_required = []
|
||||
if tool.parameters:
|
||||
for tool_key, tool_param in tool.parameters.items():
|
||||
properties[tool_key] = {"type": tool_param.param_type}
|
||||
if tool_param.description:
|
||||
properties[tool_key]["description"] = tool_param.description
|
||||
if tool_param.default:
|
||||
properties[tool_key]["default"] = tool_param.default
|
||||
if tool_param.required:
|
||||
compatiable_required.append(tool_key)
|
||||
|
||||
compatiable_tool = {
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool.tool_name,
|
||||
"description": tool.description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": properties,
|
||||
"required": compatiable_required,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
compatiable_tools.append(compatiable_tool)
|
||||
|
||||
if len(compatiable_tools) > 0:
|
||||
return compatiable_tools
|
||||
return None
|
||||
|
||||
def convert_to_sambanova_finish_reason(self, finish_reason: str) -> StopReason:
|
||||
return {
|
||||
"stop": StopReason.end_of_turn,
|
||||
"length": StopReason.out_of_tokens,
|
||||
"tool_calls": StopReason.end_of_message,
|
||||
}.get(finish_reason, StopReason.end_of_turn)
|
||||
|
||||
def convert_to_sambanova_tool_calls(
|
||||
self,
|
||||
tool_calls,
|
||||
) -> List[ToolCall]:
|
||||
if not tool_calls:
|
||||
return []
|
||||
|
||||
for call in tool_calls:
|
||||
call_function_arguments = json.loads(call.function.arguments)
|
||||
|
||||
compitable_tool_calls = [
|
||||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=call_function_arguments,
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
||||
return compitable_tool_calls
|
Loading…
Add table
Add a link
Reference in a new issue