forked from phoenix-oss/llama-stack-mirror
[post training] define llama stack post training dataset format (#717)
## context In this PR, we defined 2 llama stack dataset formats (instruct, dialog) - For instruct dataset format, the column schema will be [chat_completion_input, expected_answer], which is consistent with the eval data format. This dataset format is the abstract of single turn QA style post training data - For dialog dataset format, the column schema will be [dialog], which is a list of user messages and assistant messages that interleave together. During training, the whole list will be the model input and the loss is calculated on assistant messages only. This dataset format is the abstract of multi turn chat style post training data ## changes - defined the 2 llama stack dataset formats - an adapter to convert llama stack dataset format to torchtune dataset format - move dataset format validation to post training level instead of torchtune level since it's not specific to torchtune - add localfs as datasetio provider ## test instruct format - use https://huggingface.co/datasets/llamastack/evals as dataset and the training works as expected <img width="1443" alt="Screenshot 2025-01-09 at 5 15 14 PM" src="https://github.com/user-attachments/assets/2c37a936-c67a-4726-90e0-23fa0ba7000f" /> - use my generated local dataset and the training works as expected <img width="1617" alt="Screenshot 2025-01-09 at 5 19 11 PM" src="https://github.com/user-attachments/assets/0bdccbbf-bac2-472a-a365-15213e49bbfa" /> dialog format - use my generated local dataset and the training works as expected <img width="1588" alt="Screenshot 2025-01-09 at 5 23 16 PM" src="https://github.com/user-attachments/assets/893915ba-41a3-4d51-948b-e872060ecede" />
This commit is contained in:
parent
a174938fbd
commit
25c1d9b037
11 changed files with 182 additions and 75 deletions
|
@ -10,29 +10,22 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Dict, List
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
import torch
|
||||
from llama_models.datatypes import Model
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from pydantic import BaseModel
|
||||
from torchtune.data._messages import InputOutputToMessages, ShareGPTToMessages
|
||||
|
||||
from torchtune.models.llama3 import llama3_tokenizer
|
||||
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
||||
from torchtune.models.llama3_1 import lora_llama3_1_8b
|
||||
from torchtune.models.llama3_2 import lora_llama3_2_3b
|
||||
from torchtune.modules.transforms import Transform
|
||||
|
||||
from llama_stack.apis.common.type_system import ParamType, StringType
|
||||
from llama_stack.apis.datasets import Datasets
|
||||
|
||||
|
||||
class ColumnName(Enum):
|
||||
instruction = "instruction"
|
||||
input = "input"
|
||||
output = "output"
|
||||
text = "text"
|
||||
from llama_stack.apis.post_training import DatasetFormat
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
|
@ -41,10 +34,6 @@ class ModelConfig(BaseModel):
|
|||
checkpoint_type: str
|
||||
|
||||
|
||||
class DatasetSchema(BaseModel):
|
||||
alpaca: List[Dict[str, ParamType]]
|
||||
|
||||
|
||||
MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
||||
"Llama3.2-3B-Instruct": ModelConfig(
|
||||
model_definition=lora_llama3_2_3b,
|
||||
|
@ -58,26 +47,11 @@ MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
|||
),
|
||||
}
|
||||
|
||||
DATA_FORMATS: Dict[str, Transform] = {
|
||||
"instruct": InputOutputToMessages,
|
||||
"dialog": ShareGPTToMessages,
|
||||
}
|
||||
|
||||
EXPECTED_DATASET_SCHEMA = DatasetSchema(
|
||||
alpaca=[
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.input.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
ColumnName.text.value: StringType(),
|
||||
},
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.input.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
},
|
||||
{
|
||||
ColumnName.instruction.value: StringType(),
|
||||
ColumnName.output.value: StringType(),
|
||||
},
|
||||
]
|
||||
)
|
||||
|
||||
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
||||
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
||||
|
@ -124,19 +98,5 @@ async def get_checkpointer_model_type(
|
|||
return model_config.checkpoint_type
|
||||
|
||||
|
||||
async def validate_input_dataset_schema(
|
||||
datasets_api: Datasets,
|
||||
dataset_id: str,
|
||||
dataset_type: str,
|
||||
) -> None:
|
||||
dataset_def = await datasets_api.get_dataset(dataset_id=dataset_id)
|
||||
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
||||
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
|
||||
|
||||
if not hasattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
||||
raise ValueError(f"Dataset type {dataset_type} is not supported.")
|
||||
|
||||
if dataset_def.dataset_schema not in getattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
||||
raise ValueError(
|
||||
f"Dataset {dataset_id} does not have a correct input schema in {getattr(EXPECTED_DATASET_SCHEMA, dataset_type)}"
|
||||
)
|
||||
async def get_data_transform(data_format: DatasetFormat) -> Transform:
|
||||
return DATA_FORMATS[data_format.value]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue