forked from phoenix-oss/llama-stack-mirror
[post training] define llama stack post training dataset format (#717)
## context In this PR, we defined 2 llama stack dataset formats (instruct, dialog) - For instruct dataset format, the column schema will be [chat_completion_input, expected_answer], which is consistent with the eval data format. This dataset format is the abstract of single turn QA style post training data - For dialog dataset format, the column schema will be [dialog], which is a list of user messages and assistant messages that interleave together. During training, the whole list will be the model input and the loss is calculated on assistant messages only. This dataset format is the abstract of multi turn chat style post training data ## changes - defined the 2 llama stack dataset formats - an adapter to convert llama stack dataset format to torchtune dataset format - move dataset format validation to post training level instead of torchtune level since it's not specific to torchtune - add localfs as datasetio provider ## test instruct format - use https://huggingface.co/datasets/llamastack/evals as dataset and the training works as expected <img width="1443" alt="Screenshot 2025-01-09 at 5 15 14 PM" src="https://github.com/user-attachments/assets/2c37a936-c67a-4726-90e0-23fa0ba7000f" /> - use my generated local dataset and the training works as expected <img width="1617" alt="Screenshot 2025-01-09 at 5 19 11 PM" src="https://github.com/user-attachments/assets/0bdccbbf-bac2-472a-a365-15213e49bbfa" /> dialog format - use my generated local dataset and the training works as expected <img width="1588" alt="Screenshot 2025-01-09 at 5 23 16 PM" src="https://github.com/user-attachments/assets/893915ba-41a3-4d51-948b-e872060ecede" />
This commit is contained in:
parent
a174938fbd
commit
25c1d9b037
11 changed files with 182 additions and 75 deletions
|
@ -54,6 +54,12 @@ class AgentTurnInputType(BaseModel):
|
||||||
type: Literal["agent_turn_input"] = "agent_turn_input"
|
type: Literal["agent_turn_input"] = "agent_turn_input"
|
||||||
|
|
||||||
|
|
||||||
|
class DialogType(BaseModel):
|
||||||
|
# expects List[Message] for messages
|
||||||
|
# this type semantically contains the output label whereas ChatCompletionInputType does not
|
||||||
|
type: Literal["dialog"] = "dialog"
|
||||||
|
|
||||||
|
|
||||||
ParamType = register_schema(
|
ParamType = register_schema(
|
||||||
Annotated[
|
Annotated[
|
||||||
Union[
|
Union[
|
||||||
|
|
|
@ -27,11 +27,18 @@ class OptimizerType(Enum):
|
||||||
sgd = "sgd"
|
sgd = "sgd"
|
||||||
|
|
||||||
|
|
||||||
|
@json_schema_type
|
||||||
|
class DatasetFormat(Enum):
|
||||||
|
instruct = "instruct"
|
||||||
|
dialog = "dialog"
|
||||||
|
|
||||||
|
|
||||||
@json_schema_type
|
@json_schema_type
|
||||||
class DataConfig(BaseModel):
|
class DataConfig(BaseModel):
|
||||||
dataset_id: str
|
dataset_id: str
|
||||||
batch_size: int
|
batch_size: int
|
||||||
shuffle: bool
|
shuffle: bool
|
||||||
|
data_format: DatasetFormat
|
||||||
validation_dataset_id: Optional[str] = None
|
validation_dataset_id: Optional[str] = None
|
||||||
packed: Optional[bool] = False
|
packed: Optional[bool] = False
|
||||||
train_on_input: Optional[bool] = False
|
train_on_input: Optional[bool] = False
|
||||||
|
|
|
@ -0,0 +1,5 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
|
@ -0,0 +1,52 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
# Copyright (c) Meta Platforms, IAny, nc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
from llama_stack.apis.common.type_system import (
|
||||||
|
ChatCompletionInputType,
|
||||||
|
DialogType,
|
||||||
|
StringType,
|
||||||
|
)
|
||||||
|
from llama_stack.apis.datasets import Datasets
|
||||||
|
from llama_stack.providers.utils.common.data_schema_validator import (
|
||||||
|
ColumnName,
|
||||||
|
validate_dataset_schema,
|
||||||
|
)
|
||||||
|
|
||||||
|
EXPECTED_DATASET_SCHEMA = {
|
||||||
|
"instruct": [
|
||||||
|
{
|
||||||
|
ColumnName.chat_completion_input.value: ChatCompletionInputType(),
|
||||||
|
ColumnName.expected_answer.value: StringType(),
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"dialog": [
|
||||||
|
{
|
||||||
|
ColumnName.dialog.value: DialogType(),
|
||||||
|
}
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
async def validate_input_dataset_schema(
|
||||||
|
datasets_api: Datasets,
|
||||||
|
dataset_id: str,
|
||||||
|
dataset_type: str,
|
||||||
|
) -> None:
|
||||||
|
dataset_def = await datasets_api.get_dataset(dataset_id=dataset_id)
|
||||||
|
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
||||||
|
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
|
||||||
|
|
||||||
|
if dataset_type not in EXPECTED_DATASET_SCHEMA:
|
||||||
|
raise ValueError(f"Dataset type {dataset_type} is not supported.")
|
||||||
|
|
||||||
|
validate_dataset_schema(
|
||||||
|
dataset_def.dataset_schema, EXPECTED_DATASET_SCHEMA[dataset_type]
|
||||||
|
)
|
|
@ -10,29 +10,22 @@
|
||||||
# This source code is licensed under the terms described in the LICENSE file in
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
# the root directory of this source tree.
|
# the root directory of this source tree.
|
||||||
|
|
||||||
from enum import Enum
|
from typing import Any, Callable, Dict
|
||||||
from typing import Any, Callable, Dict, List
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from llama_models.datatypes import Model
|
from llama_models.datatypes import Model
|
||||||
from llama_models.sku_list import resolve_model
|
from llama_models.sku_list import resolve_model
|
||||||
|
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
from torchtune.data._messages import InputOutputToMessages, ShareGPTToMessages
|
||||||
|
|
||||||
from torchtune.models.llama3 import llama3_tokenizer
|
from torchtune.models.llama3 import llama3_tokenizer
|
||||||
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
from torchtune.models.llama3._tokenizer import Llama3Tokenizer
|
||||||
from torchtune.models.llama3_1 import lora_llama3_1_8b
|
from torchtune.models.llama3_1 import lora_llama3_1_8b
|
||||||
from torchtune.models.llama3_2 import lora_llama3_2_3b
|
from torchtune.models.llama3_2 import lora_llama3_2_3b
|
||||||
|
from torchtune.modules.transforms import Transform
|
||||||
|
|
||||||
from llama_stack.apis.common.type_system import ParamType, StringType
|
from llama_stack.apis.post_training import DatasetFormat
|
||||||
from llama_stack.apis.datasets import Datasets
|
|
||||||
|
|
||||||
|
|
||||||
class ColumnName(Enum):
|
|
||||||
instruction = "instruction"
|
|
||||||
input = "input"
|
|
||||||
output = "output"
|
|
||||||
text = "text"
|
|
||||||
|
|
||||||
|
|
||||||
class ModelConfig(BaseModel):
|
class ModelConfig(BaseModel):
|
||||||
|
@ -41,10 +34,6 @@ class ModelConfig(BaseModel):
|
||||||
checkpoint_type: str
|
checkpoint_type: str
|
||||||
|
|
||||||
|
|
||||||
class DatasetSchema(BaseModel):
|
|
||||||
alpaca: List[Dict[str, ParamType]]
|
|
||||||
|
|
||||||
|
|
||||||
MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
||||||
"Llama3.2-3B-Instruct": ModelConfig(
|
"Llama3.2-3B-Instruct": ModelConfig(
|
||||||
model_definition=lora_llama3_2_3b,
|
model_definition=lora_llama3_2_3b,
|
||||||
|
@ -58,26 +47,11 @@ MODEL_CONFIGS: Dict[str, ModelConfig] = {
|
||||||
),
|
),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
DATA_FORMATS: Dict[str, Transform] = {
|
||||||
|
"instruct": InputOutputToMessages,
|
||||||
|
"dialog": ShareGPTToMessages,
|
||||||
|
}
|
||||||
|
|
||||||
EXPECTED_DATASET_SCHEMA = DatasetSchema(
|
|
||||||
alpaca=[
|
|
||||||
{
|
|
||||||
ColumnName.instruction.value: StringType(),
|
|
||||||
ColumnName.input.value: StringType(),
|
|
||||||
ColumnName.output.value: StringType(),
|
|
||||||
ColumnName.text.value: StringType(),
|
|
||||||
},
|
|
||||||
{
|
|
||||||
ColumnName.instruction.value: StringType(),
|
|
||||||
ColumnName.input.value: StringType(),
|
|
||||||
ColumnName.output.value: StringType(),
|
|
||||||
},
|
|
||||||
{
|
|
||||||
ColumnName.instruction.value: StringType(),
|
|
||||||
ColumnName.output.value: StringType(),
|
|
||||||
},
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
BuildLoraModelCallable = Callable[..., torch.nn.Module]
|
||||||
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
BuildTokenizerCallable = Callable[..., Llama3Tokenizer]
|
||||||
|
@ -124,19 +98,5 @@ async def get_checkpointer_model_type(
|
||||||
return model_config.checkpoint_type
|
return model_config.checkpoint_type
|
||||||
|
|
||||||
|
|
||||||
async def validate_input_dataset_schema(
|
async def get_data_transform(data_format: DatasetFormat) -> Transform:
|
||||||
datasets_api: Datasets,
|
return DATA_FORMATS[data_format.value]
|
||||||
dataset_id: str,
|
|
||||||
dataset_type: str,
|
|
||||||
) -> None:
|
|
||||||
dataset_def = await datasets_api.get_dataset(dataset_id=dataset_id)
|
|
||||||
if not dataset_def.dataset_schema or len(dataset_def.dataset_schema) == 0:
|
|
||||||
raise ValueError(f"Dataset {dataset_id} does not have a schema defined.")
|
|
||||||
|
|
||||||
if not hasattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
|
||||||
raise ValueError(f"Dataset type {dataset_type} is not supported.")
|
|
||||||
|
|
||||||
if dataset_def.dataset_schema not in getattr(EXPECTED_DATASET_SCHEMA, dataset_type):
|
|
||||||
raise ValueError(
|
|
||||||
f"Dataset {dataset_id} does not have a correct input schema in {getattr(EXPECTED_DATASET_SCHEMA, dataset_type)}"
|
|
||||||
)
|
|
||||||
|
|
|
@ -0,0 +1,62 @@
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the terms described in the LICENSE file in
|
||||||
|
# the root directory of this source tree.
|
||||||
|
|
||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
#
|
||||||
|
# This source code is licensed under the BSD-style license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
from typing import Any, Mapping
|
||||||
|
|
||||||
|
from llama_stack.providers.utils.common.data_schema_validator import ColumnName
|
||||||
|
|
||||||
|
|
||||||
|
def llama_stack_instruct_to_torchtune_instruct(
|
||||||
|
sample: Mapping[str, Any]
|
||||||
|
) -> Mapping[str, Any]:
|
||||||
|
assert (
|
||||||
|
ColumnName.chat_completion_input.value in sample
|
||||||
|
and ColumnName.expected_answer.value in sample
|
||||||
|
), "Invalid input row"
|
||||||
|
input_messages = eval(str(sample[ColumnName.chat_completion_input.value]))
|
||||||
|
|
||||||
|
assert (
|
||||||
|
len(input_messages) == 1
|
||||||
|
), "llama stack intruct dataset format only supports 1 user message"
|
||||||
|
input_message = input_messages[0]
|
||||||
|
|
||||||
|
assert "content" in input_message, "content not found in input message"
|
||||||
|
input = input_message["content"]
|
||||||
|
output = sample[ColumnName.expected_answer.value]
|
||||||
|
|
||||||
|
return {
|
||||||
|
"input": input,
|
||||||
|
"output": output,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def llama_stack_chat_to_torchtune_chat(sample: Mapping[str, Any]) -> Mapping[str, Any]:
|
||||||
|
assert ColumnName.dialog.value in sample, "Invalid input row"
|
||||||
|
role_map = {"user": "human", "assistant": "gpt"}
|
||||||
|
dialog = eval(str(sample[ColumnName.dialog.value]))
|
||||||
|
|
||||||
|
assert len(dialog) > 1, "dialog must have at least 2 messagse"
|
||||||
|
roles = []
|
||||||
|
conversations = []
|
||||||
|
for message in dialog:
|
||||||
|
assert (
|
||||||
|
"role" in message and "content" in message
|
||||||
|
), "role and content must in message"
|
||||||
|
roles.append(message["role"])
|
||||||
|
conversations.append(
|
||||||
|
{"from": role_map[message["role"]], "value": message["content"]}
|
||||||
|
)
|
||||||
|
|
||||||
|
assert roles[0] == "user", "first message must be from user"
|
||||||
|
assert "assistant" in roles, "at least 1 message should be from assistant"
|
||||||
|
|
||||||
|
return {"conversations": conversations}
|
|
@ -19,6 +19,11 @@ from torchtune.data._common import CROSS_ENTROPY_IGNORE_IDX
|
||||||
from torchtune.data._messages import validate_messages
|
from torchtune.data._messages import validate_messages
|
||||||
from torchtune.modules.transforms import Transform
|
from torchtune.modules.transforms import Transform
|
||||||
|
|
||||||
|
from llama_stack.providers.inline.post_training.torchtune.datasets.format_adapter import (
|
||||||
|
llama_stack_chat_to_torchtune_chat,
|
||||||
|
llama_stack_instruct_to_torchtune_instruct,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class SFTDataset(Dataset):
|
class SFTDataset(Dataset):
|
||||||
def __init__(
|
def __init__(
|
||||||
|
@ -26,10 +31,12 @@ class SFTDataset(Dataset):
|
||||||
rows: List[Dict[str, Any]],
|
rows: List[Dict[str, Any]],
|
||||||
message_transform: Transform,
|
message_transform: Transform,
|
||||||
model_transform: Transform,
|
model_transform: Transform,
|
||||||
|
dataset_type: str,
|
||||||
) -> None:
|
) -> None:
|
||||||
self._rows = rows
|
self._rows = rows
|
||||||
self._message_transform = message_transform
|
self._message_transform = message_transform
|
||||||
self._model_transform = model_transform
|
self._model_transform = model_transform
|
||||||
|
self._dataset_type = dataset_type
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self._rows)
|
return len(self._rows)
|
||||||
|
@ -39,6 +46,12 @@ class SFTDataset(Dataset):
|
||||||
return self._prepare_sample(sample)
|
return self._prepare_sample(sample)
|
||||||
|
|
||||||
def _prepare_sample(self, sample: Mapping[str, Any]) -> Dict[str, Any]:
|
def _prepare_sample(self, sample: Mapping[str, Any]) -> Dict[str, Any]:
|
||||||
|
if self._dataset_type == "instruct":
|
||||||
|
sample = llama_stack_instruct_to_torchtune_instruct(sample)
|
||||||
|
elif self._dataset_type == "dialog":
|
||||||
|
sample = llama_stack_chat_to_torchtune_chat(sample)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Invalid dataset type: {self._dataset_type}")
|
||||||
transformed_sample = self._message_transform(sample)
|
transformed_sample = self._message_transform(sample)
|
||||||
if "messages" in transformed_sample:
|
if "messages" in transformed_sample:
|
||||||
validate_messages(transformed_sample["messages"])
|
validate_messages(transformed_sample["messages"])
|
||||||
|
|
|
@ -18,7 +18,7 @@ from torch import nn
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
from torch.utils.data import DataLoader, DistributedSampler
|
from torch.utils.data import DataLoader, DistributedSampler
|
||||||
from torchtune import modules, training, utils as torchtune_utils
|
from torchtune import modules, training, utils as torchtune_utils
|
||||||
from torchtune.data import AlpacaToMessages, padded_collate_sft
|
from torchtune.data import padded_collate_sft
|
||||||
|
|
||||||
from torchtune.modules.loss import CEWithChunkedOutputLoss
|
from torchtune.modules.loss import CEWithChunkedOutputLoss
|
||||||
from torchtune.modules.peft import (
|
from torchtune.modules.peft import (
|
||||||
|
@ -47,6 +47,9 @@ from llama_stack.apis.post_training import (
|
||||||
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
|
from llama_stack.distribution.utils.config_dirs import DEFAULT_CHECKPOINT_DIR
|
||||||
|
|
||||||
from llama_stack.distribution.utils.model_utils import model_local_dir
|
from llama_stack.distribution.utils.model_utils import model_local_dir
|
||||||
|
from llama_stack.providers.inline.post_training.common.validator import (
|
||||||
|
validate_input_dataset_schema,
|
||||||
|
)
|
||||||
|
|
||||||
from llama_stack.providers.inline.post_training.torchtune.common import utils
|
from llama_stack.providers.inline.post_training.torchtune.common import utils
|
||||||
from llama_stack.providers.inline.post_training.torchtune.common.checkpointer import (
|
from llama_stack.providers.inline.post_training.torchtune.common.checkpointer import (
|
||||||
|
@ -129,8 +132,10 @@ class LoraFinetuningSingleDevice:
|
||||||
self.seed = training.set_seed(seed=config.torch_seed)
|
self.seed = training.set_seed(seed=config.torch_seed)
|
||||||
self.epochs_run = 0
|
self.epochs_run = 0
|
||||||
self.total_epochs = training_config.n_epochs
|
self.total_epochs = training_config.n_epochs
|
||||||
|
self._data_format = training_config.data_config.data_format
|
||||||
self._shuffle = training_config.data_config.shuffle
|
self._shuffle = training_config.data_config.shuffle
|
||||||
self._batch_size = training_config.data_config.batch_size
|
self._batch_size = training_config.data_config.batch_size
|
||||||
|
self._train_on_input = training_config.data_config.train_on_input
|
||||||
|
|
||||||
# this is important for debugging purpose
|
# this is important for debugging purpose
|
||||||
self.max_steps_per_epoch = training_config.max_steps_per_epoch
|
self.max_steps_per_epoch = training_config.max_steps_per_epoch
|
||||||
|
@ -354,18 +359,17 @@ class LoraFinetuningSingleDevice:
|
||||||
all_rows = await fetch_rows(dataset_id)
|
all_rows = await fetch_rows(dataset_id)
|
||||||
rows = all_rows.rows
|
rows = all_rows.rows
|
||||||
|
|
||||||
# Curretly only support alpaca instruct dataset
|
await validate_input_dataset_schema(
|
||||||
# TODO @SLR722 make the message_transform swappable and support more dataset types
|
|
||||||
# TODO @SLR722 make the input dataset schema more flexible by exposing column_map
|
|
||||||
await utils.validate_input_dataset_schema(
|
|
||||||
datasets_api=self.datasets_api,
|
datasets_api=self.datasets_api,
|
||||||
dataset_id=dataset_id,
|
dataset_id=dataset_id,
|
||||||
dataset_type="alpaca",
|
dataset_type=self._data_format.value,
|
||||||
)
|
)
|
||||||
|
data_transform = await utils.get_data_transform(self._data_format)
|
||||||
ds = SFTDataset(
|
ds = SFTDataset(
|
||||||
rows,
|
rows,
|
||||||
message_transform=AlpacaToMessages(train_on_input=False),
|
message_transform=data_transform(train_on_input=self._train_on_input),
|
||||||
model_transform=tokenizer,
|
model_transform=tokenizer,
|
||||||
|
dataset_type=self._data_format.value,
|
||||||
)
|
)
|
||||||
|
|
||||||
sampler = DistributedSampler(
|
sampler = DistributedSampler(
|
||||||
|
|
|
@ -23,6 +23,7 @@ class ColumnName(Enum):
|
||||||
completion_input = "completion_input"
|
completion_input = "completion_input"
|
||||||
generated_answer = "generated_answer"
|
generated_answer = "generated_answer"
|
||||||
context = "context"
|
context = "context"
|
||||||
|
dialog = "dialog"
|
||||||
|
|
||||||
|
|
||||||
VALID_SCHEMAS_FOR_SCORING = [
|
VALID_SCHEMAS_FOR_SCORING = [
|
||||||
|
|
|
@ -13,6 +13,7 @@ distribution_spec:
|
||||||
post_training:
|
post_training:
|
||||||
- inline::torchtune
|
- inline::torchtune
|
||||||
datasetio:
|
datasetio:
|
||||||
|
- inline::localfs
|
||||||
- remote::huggingface
|
- remote::huggingface
|
||||||
telemetry:
|
telemetry:
|
||||||
- inline::meta-reference
|
- inline::meta-reference
|
||||||
|
@ -22,4 +23,6 @@ distribution_spec:
|
||||||
- inline::llama-guard
|
- inline::llama-guard
|
||||||
memory:
|
memory:
|
||||||
- inline::faiss
|
- inline::faiss
|
||||||
|
tool_runtime:
|
||||||
|
- remote::brave-search
|
||||||
image_type: conda
|
image_type: conda
|
||||||
|
|
|
@ -12,6 +12,7 @@ apis:
|
||||||
- scoring
|
- scoring
|
||||||
- telemetry
|
- telemetry
|
||||||
- post_training
|
- post_training
|
||||||
|
- tool_runtime
|
||||||
providers:
|
providers:
|
||||||
inference:
|
inference:
|
||||||
- provider_id: meta-reference-inference
|
- provider_id: meta-reference-inference
|
||||||
|
@ -32,6 +33,9 @@ providers:
|
||||||
- provider_id: huggingface-0
|
- provider_id: huggingface-0
|
||||||
provider_type: remote::huggingface
|
provider_type: remote::huggingface
|
||||||
config: {}
|
config: {}
|
||||||
|
- provider_id: localfs
|
||||||
|
provider_type: inline::localfs
|
||||||
|
config: {}
|
||||||
telemetry:
|
telemetry:
|
||||||
- provider_id: meta-reference
|
- provider_id: meta-reference
|
||||||
provider_type: inline::meta-reference
|
provider_type: inline::meta-reference
|
||||||
|
@ -60,6 +64,13 @@ providers:
|
||||||
type: sqlite
|
type: sqlite
|
||||||
namespace: null
|
namespace: null
|
||||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/faiss_store.db
|
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/meta-reference-gpu}/faiss_store.db
|
||||||
|
tool_runtime:
|
||||||
|
- provider_id: brave-search
|
||||||
|
provider_type: remote::brave-search
|
||||||
|
config:
|
||||||
|
api_key: ${env.BRAVE_SEARCH_API_KEY:}
|
||||||
|
max_results: 3
|
||||||
|
|
||||||
|
|
||||||
metadata_store:
|
metadata_store:
|
||||||
namespace: null
|
namespace: null
|
||||||
|
@ -68,23 +79,6 @@ metadata_store:
|
||||||
models: []
|
models: []
|
||||||
shields: []
|
shields: []
|
||||||
memory_banks: []
|
memory_banks: []
|
||||||
datasets:
|
datasets: []
|
||||||
- dataset_id: alpaca
|
|
||||||
provider_id: huggingface-0
|
|
||||||
url:
|
|
||||||
uri: https://huggingface.co/datasets/tatsu-lab/alpaca
|
|
||||||
metadata:
|
|
||||||
path: tatsu-lab/alpaca
|
|
||||||
name:
|
|
||||||
split: train
|
|
||||||
dataset_schema:
|
|
||||||
instruction:
|
|
||||||
type: string
|
|
||||||
input:
|
|
||||||
type: string
|
|
||||||
output:
|
|
||||||
type: string
|
|
||||||
text:
|
|
||||||
type: string
|
|
||||||
scoring_fns: []
|
scoring_fns: []
|
||||||
eval_tasks: []
|
eval_tasks: []
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue