Auto-generate distro yamls + docs (#468)

# What does this PR do?

Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs

for the distributions.

## Test Plan

At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.
This commit is contained in:
Ashwin Bharambe 2024-11-18 14:57:06 -08:00 committed by GitHub
parent 0784284ab5
commit 2a31163178
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
88 changed files with 3008 additions and 852 deletions

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .vllm import get_distribution_template # noqa: F401

View file

@ -1,12 +1,19 @@
version: '2'
name: remote-vllm
distribution_spec:
description: Use (an external) vLLM server for running LLM inference
docker_image: null
providers:
inference: remote::vllm
inference:
- remote::vllm
memory:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety: inline::llama-guard
agents: inline::meta-reference
telemetry: inline::meta-reference
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
image_type: conda

View file

@ -0,0 +1,119 @@
# Remote vLLM Distribution
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations:
{{ providers_table }}
You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.
{% if run_config_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in run_config_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
## Setting up vLLM server
Please check the [vLLM Documentation](https://docs.vllm.ai/en/v0.5.5/serving/deploying_with_docker.html) to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:
```bash
export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--ipc=host \
vllm/vllm-openai:latest \
--model $INFERENCE_MODEL \
--port $INFERENCE_PORT
```
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
```bash
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run \
--runtime nvidia \
--gpus $CUDA_VISIBLE_DEVICES \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
-p $SAFETY_PORT:$SAFETY_PORT \
--ipc=host \
vllm/vllm-openai:latest \
--model $SAFETY_MODEL \
--port $SAFETY_PORT
```
## Running Llama Stack
Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
/root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT \
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-{{ name }} \
/root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env VLLM_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
```
### Via Conda
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
```bash
llama stack build --template remote-vllm --image-type conda
llama stack run ./run.yaml \
--port 5001 \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://127.0.0.1:$INFERENCE_PORT
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port 5001 \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env VLLM_URL=http://127.0.0.1:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env VLLM_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT
```

View file

@ -0,0 +1,70 @@
version: '2'
image_name: remote-vllm
docker_image: null
conda_env: null
apis:
- agents
- inference
- memory
- safety
- telemetry
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL}
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
api_token: ${env.VLLM_API_TOKEN:fake}
- provider_id: vllm-safety
provider_type: remote::vllm
config:
url: ${env.SAFETY_VLLM_URL}
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
api_token: ${env.VLLM_API_TOKEN:fake}
memory:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
provider_model_id: null
- metadata: {}
model_id: ${env.SAFETY_MODEL}
provider_id: vllm-safety
provider_model_id: null
shields:
- params: null
shield_id: ${env.SAFETY_MODEL}
provider_id: null
provider_shield_id: null
memory_banks: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -0,0 +1,56 @@
version: '2'
image_name: remote-vllm
docker_image: null
conda_env: null
apis:
- agents
- inference
- memory
- safety
- telemetry
providers:
inference:
- provider_id: vllm-inference
provider_type: remote::vllm
config:
url: ${env.VLLM_URL}
max_tokens: ${env.VLLM_MAX_TOKENS:4096}
api_token: ${env.VLLM_API_TOKEN:fake}
memory:
- provider_id: faiss
provider_type: inline::faiss
config:
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/faiss_store.db
safety:
- provider_id: llama-guard
provider_type: inline::llama-guard
config: {}
agents:
- provider_id: meta-reference
provider_type: inline::meta-reference
config:
persistence_store:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/agents_store.db
telemetry:
- provider_id: meta-reference
provider_type: inline::meta-reference
config: {}
metadata_store:
namespace: null
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db
models:
- metadata: {}
model_id: ${env.INFERENCE_MODEL}
provider_id: vllm-inference
provider_model_id: null
shields: []
memory_banks: []
datasets: []
scoring_fns: []
eval_tasks: []

View file

@ -0,0 +1,100 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::vllm"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
}
inference_provider = Provider(
provider_id="vllm-inference",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.VLLM_URL}",
),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm-inference",
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="vllm-safety",
)
return DistributionTemplate(
name="remote-vllm",
distro_type="self_hosted",
description="Use (an external) vLLM server for running LLM inference",
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=[inference_model, safety_model],
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
},
default_models=[inference_model],
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
Provider(
provider_id="vllm-safety",
provider_type="remote::vllm",
config=VLLMInferenceAdapterConfig.sample_run_config(
url="${env.SAFETY_VLLM_URL}",
),
),
],
},
default_models=[
inference_model,
safety_model,
],
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
),
},
docker_compose_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the vLLM server",
),
"VLLM_URL": (
"http://host.docker.internal:5100}/v1",
"URL of the vLLM server with the main inference model",
),
"MAX_TOKENS": (
"4096",
"Maximum number of tokens for generation",
),
"SAFETY_VLLM_URL": (
"http://host.docker.internal:5101/v1",
"URL of the vLLM server with the safety model",
),
"SAFETY_MODEL": (
"meta-llama/Llama-Guard-3-1B",
"Name of the safety (Llama-Guard) model to use",
),
},
)