forked from phoenix-oss/llama-stack-mirror
feat: OpenAI-Compatible models, completions, chat/completions (#1894)
# What does this PR do? This stubs in some OpenAI server-side compatibility with three new endpoints: /v1/openai/v1/models /v1/openai/v1/completions /v1/openai/v1/chat/completions This gives common inference apps using OpenAI clients the ability to talk to Llama Stack using an endpoint like http://localhost:8321/v1/openai/v1 . The two "v1" instances in there isn't awesome, but the thinking is that Llama Stack's API is v1 and then our OpenAI compatibility layer is compatible with OpenAI V1. And, some OpenAI clients implicitly assume the URL ends with "v1", so this gives maximum compatibility. The openai models endpoint is implemented in the routing layer, and just returns all the models Llama Stack knows about. The following providers should be working with the new OpenAI completions and chat/completions API: * remote::anthropic (untested) * remote::cerebras-openai-compat (untested) * remote::fireworks (tested) * remote::fireworks-openai-compat (untested) * remote::gemini (untested) * remote::groq-openai-compat (untested) * remote::nvidia (tested) * remote::ollama (tested) * remote::openai (untested) * remote::passthrough (untested) * remote::sambanova-openai-compat (untested) * remote::together (tested) * remote::together-openai-compat (untested) * remote::vllm (tested) The goal to support this for every inference provider - proxying directly to the provider's OpenAI endpoint for OpenAI-compatible providers. For providers that don't have an OpenAI-compatible API, we'll add a mixin to translate incoming OpenAI requests to Llama Stack inference requests and translate the Llama Stack inference responses to OpenAI responses. This is related to #1817 but is a bit larger in scope than just chat completions, as I have real use-cases that need the older completions API as well. ## Test Plan ### vLLM ``` VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` ### ollama ``` INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0" ``` ## Documentation Run a Llama Stack distribution that uses one of the providers mentioned in the list above. Then, use your favorite OpenAI client to send completion or chat completion requests with the base_url set to http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the host and port of your Llama Stack server, if different. --------- Signed-off-by: Ben Browning <bbrownin@redhat.com>
This commit is contained in:
parent
24d70cedca
commit
2b2db5fbda
27 changed files with 3265 additions and 20 deletions
|
@ -5,8 +5,10 @@
|
|||
# the root directory of this source tree.
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import uuid
|
||||
import warnings
|
||||
from typing import AsyncGenerator, Dict, Iterable, List, Optional, Union
|
||||
from typing import Any, AsyncGenerator, Dict, Iterable, List, Optional, Union
|
||||
|
||||
from openai import AsyncStream
|
||||
from openai.types.chat import (
|
||||
|
@ -83,6 +85,7 @@ from llama_stack.apis.inference import (
|
|||
TopPSamplingStrategy,
|
||||
UserMessage,
|
||||
)
|
||||
from llama_stack.apis.inference.inference import OpenAIChatCompletion, OpenAICompletion, OpenAICompletionChoice
|
||||
from llama_stack.models.llama.datatypes import (
|
||||
BuiltinTool,
|
||||
StopReason,
|
||||
|
@ -843,6 +846,31 @@ def _convert_openai_logprobs(
|
|||
]
|
||||
|
||||
|
||||
def _convert_openai_sampling_params(
|
||||
max_tokens: Optional[int] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
) -> SamplingParams:
|
||||
sampling_params = SamplingParams()
|
||||
|
||||
if max_tokens:
|
||||
sampling_params.max_tokens = max_tokens
|
||||
|
||||
# Map an explicit temperature of 0 to greedy sampling
|
||||
if temperature == 0:
|
||||
strategy = GreedySamplingStrategy()
|
||||
else:
|
||||
# OpenAI defaults to 1.0 for temperature and top_p if unset
|
||||
if temperature is None:
|
||||
temperature = 1.0
|
||||
if top_p is None:
|
||||
top_p = 1.0
|
||||
strategy = TopPSamplingStrategy(temperature=temperature, top_p=top_p)
|
||||
|
||||
sampling_params.strategy = strategy
|
||||
return sampling_params
|
||||
|
||||
|
||||
def convert_openai_chat_completion_choice(
|
||||
choice: OpenAIChoice,
|
||||
) -> ChatCompletionResponse:
|
||||
|
@ -1049,3 +1077,106 @@ async def convert_openai_chat_completion_stream(
|
|||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
async def prepare_openai_completion_params(**params):
|
||||
completion_params = {k: v for k, v in params.items() if v is not None}
|
||||
return completion_params
|
||||
|
||||
|
||||
class OpenAICompletionUnsupportedMixin:
|
||||
async def openai_completion(
|
||||
self,
|
||||
model: str,
|
||||
prompt: Union[str, List[str], List[int], List[List[int]]],
|
||||
best_of: Optional[int] = None,
|
||||
echo: Optional[bool] = None,
|
||||
frequency_penalty: Optional[float] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
guided_choice: Optional[List[str]] = None,
|
||||
prompt_logprobs: Optional[int] = None,
|
||||
) -> OpenAICompletion:
|
||||
if stream:
|
||||
raise ValueError(f"{self.__class__.__name__} doesn't support streaming openai completions")
|
||||
|
||||
# This is a pretty hacky way to do emulate completions -
|
||||
# basically just de-batches them...
|
||||
prompts = [prompt] if not isinstance(prompt, list) else prompt
|
||||
|
||||
sampling_params = _convert_openai_sampling_params(
|
||||
max_tokens=max_tokens,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
)
|
||||
|
||||
choices = []
|
||||
# "n" is the number of completions to generate per prompt
|
||||
for _i in range(0, n):
|
||||
# and we may have multiple prompts, if batching was used
|
||||
|
||||
for prompt in prompts:
|
||||
result = self.completion(
|
||||
model_id=model,
|
||||
content=prompt,
|
||||
sampling_params=sampling_params,
|
||||
)
|
||||
|
||||
index = len(choices)
|
||||
text = result.content
|
||||
finish_reason = _convert_openai_finish_reason(result.stop_reason)
|
||||
|
||||
choice = OpenAICompletionChoice(
|
||||
index=index,
|
||||
text=text,
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
choices.append(choice)
|
||||
|
||||
return OpenAICompletion(
|
||||
id=f"cmpl-{uuid.uuid4()}",
|
||||
choices=choices,
|
||||
created=int(time.time()),
|
||||
model=model,
|
||||
object="text_completion",
|
||||
)
|
||||
|
||||
|
||||
class OpenAIChatCompletionUnsupportedMixin:
|
||||
async def openai_chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
messages: List[OpenAIChatCompletionMessage],
|
||||
frequency_penalty: Optional[float] = None,
|
||||
function_call: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
functions: Optional[List[Dict[str, Any]]] = None,
|
||||
logit_bias: Optional[Dict[str, float]] = None,
|
||||
logprobs: Optional[bool] = None,
|
||||
max_completion_tokens: Optional[int] = None,
|
||||
max_tokens: Optional[int] = None,
|
||||
n: Optional[int] = None,
|
||||
parallel_tool_calls: Optional[bool] = None,
|
||||
presence_penalty: Optional[float] = None,
|
||||
response_format: Optional[Dict[str, str]] = None,
|
||||
seed: Optional[int] = None,
|
||||
stop: Optional[Union[str, List[str]]] = None,
|
||||
stream: Optional[bool] = None,
|
||||
stream_options: Optional[Dict[str, Any]] = None,
|
||||
temperature: Optional[float] = None,
|
||||
tool_choice: Optional[Union[str, Dict[str, Any]]] = None,
|
||||
tools: Optional[List[Dict[str, Any]]] = None,
|
||||
top_logprobs: Optional[int] = None,
|
||||
top_p: Optional[float] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> OpenAIChatCompletion:
|
||||
raise ValueError(f"{self.__class__.__name__} doesn't support openai chat completion")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue