feat: inference passthrough provider (#1166)

##  What does this PR do?
In this PR, we implement a passthrough inference provider that works for
any endpoints that respect llama stack inference API definition.

## Test Plan
config some endpoint that respect llama stack inference API definition
and got the inference results successfully

<img width="1268" alt="Screenshot 2025-02-19 at 8 52 51 PM"
src="https://github.com/user-attachments/assets/447816e4-ea7a-4365-b90c-386dc7dcf4a1"
/>
This commit is contained in:
Botao Chen 2025-02-19 21:47:00 -08:00 committed by GitHub
parent d39f8de619
commit 2b995c22eb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 364 additions and 0 deletions

View file

@ -0,0 +1,148 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional
from llama_stack_client import LlamaStackClient
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.apis.models import Model
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from .config import PassthroughImplConfig
class PassthroughInferenceAdapter(Inference):
def __init__(self, config: PassthroughImplConfig) -> None:
ModelRegistryHelper.__init__(self, [])
self.config = config
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def unregister_model(self, model_id: str) -> None:
pass
async def register_model(self, model: Model) -> Model:
return model
def _get_client(self) -> LlamaStackClient:
passthrough_url = None
passthrough_api_key = None
provider_data = None
if self.config.url is not None:
passthrough_url = self.config.url
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.passthrough_url:
raise ValueError(
'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": <your passthrough url>}'
)
passthrough_url = provider_data.passthrough_url
if self.config.api_key is not None:
passthrough_api_key = self.config.api_key.get_secret_value()
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.passthrough_api_key:
raise ValueError(
'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": <your api key>}'
)
passthrough_api_key = provider_data.passthrough_api_key
return LlamaStackClient(
base_url=passthrough_url,
api_key=passthrough_api_key,
provider_data=provider_data,
)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
client = self._get_client()
model = await self.model_store.get_model(model_id)
params = {
"model_id": model.provider_resource_id,
"content": content,
"sampling_params": sampling_params,
"response_format": response_format,
"stream": stream,
"logprobs": logprobs,
}
params = {key: value for key, value in params.items() if value is not None}
# only pass through the not None params
return client.inference.completion(**params)
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
tool_config: Optional[ToolConfig] = None,
) -> AsyncGenerator:
client = self._get_client()
model = await self.model_store.get_model(model_id)
params = {
"model_id": model.provider_resource_id,
"messages": messages,
"sampling_params": sampling_params,
"tools": tools,
"tool_choice": tool_choice,
"tool_prompt_format": tool_prompt_format,
"response_format": response_format,
"stream": stream,
"logprobs": logprobs,
}
params = {key: value for key, value in params.items() if value is not None}
# only pass through the not None params
return client.inference.chat_completion(**params)
async def embeddings(
self,
model_id: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
client = self._get_client()
model = await self.model_store.get_model(model_id)
return client.inference.embeddings(
model_id=model.provider_resource_id,
contents=contents,
)