feat(dataset api): (1.4/n) fix resolver signature mismatch (#1658)

# What does this PR do?
- fix datasets api signature mis-match so that llama stack run can start

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
llama stack run
```
<img width="626" alt="image"
src="https://github.com/user-attachments/assets/59072d1a-ccb6-453a-80e8-d87419896c41"
/>


[//]: # (## Documentation)
This commit is contained in:
Xi Yan 2025-03-15 14:56:11 -07:00 committed by GitHub
parent 72ccdc19a8
commit 2c9d624910
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 105 additions and 80 deletions

View file

@ -13,7 +13,7 @@ from urllib.parse import urlparse
import pandas
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
@ -128,36 +128,27 @@ class LocalFSDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def get_rows_paginated(
async def iterrows(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
dataset_info = self.dataset_infos.get(dataset_id)
dataset_info.dataset_impl.load()
if page_token and not page_token.isnumeric():
raise ValueError("Invalid page_token")
start_index = start_index or 0
if page_token is None or len(page_token) == 0:
next_page_token = 0
else:
next_page_token = int(page_token)
start = next_page_token
if rows_in_page == -1:
if limit is None or limit == -1:
end = len(dataset_info.dataset_impl)
else:
end = min(start + rows_in_page, len(dataset_info.dataset_impl))
end = min(start_index + limit, len(dataset_info.dataset_impl))
rows = dataset_info.dataset_impl[start:end]
rows = dataset_info.dataset_impl[start_index:end]
return PaginatedRowsResult(
rows=rows,
total_count=len(rows),
next_page_token=str(end),
return IterrowsResponse(
data=rows,
next_index=end if end < len(dataset_info.dataset_impl) else None,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:

View file

@ -90,7 +90,7 @@ class MetaReferenceEvalImpl(
scoring_functions = task_def.scoring_functions
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.eval.value))
all_rows = await self.datasetio_api.get_rows_paginated(
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=(-1 if benchmark_config.num_examples is None else benchmark_config.num_examples),
)

View file

@ -328,7 +328,7 @@ class LoraFinetuningSingleDevice:
batch_size: int,
) -> Tuple[DistributedSampler, DataLoader]:
async def fetch_rows(dataset_id: str):
return await self.datasetio_api.get_rows_paginated(
return await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
)

View file

@ -24,7 +24,9 @@ from llama_stack.providers.utils.common.data_schema_validator import (
from .config import BasicScoringConfig
from .scoring_fn.bfcl_scoring_fn import BFCLScoringFn
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
from .scoring_fn.regex_parser_math_response_scoring_fn import RegexParserMathResponseScoringFn
from .scoring_fn.regex_parser_math_response_scoring_fn import (
RegexParserMathResponseScoringFn,
)
from .scoring_fn.regex_parser_scoring_fn import RegexParserScoringFn
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
@ -82,7 +84,7 @@ class BasicScoringImpl(
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.get_rows_paginated(
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
)

View file

@ -167,7 +167,7 @@ class BraintrustScoringImpl(
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.get_rows_paginated(
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
)

View file

@ -72,7 +72,7 @@ class LlmAsJudgeScoringImpl(
dataset_def = await self.datasets_api.get_dataset(dataset_id=dataset_id)
validate_dataset_schema(dataset_def.dataset_schema, get_valid_schemas(Api.scoring.value))
all_rows = await self.datasetio_api.get_rows_paginated(
all_rows = await self.datasetio_api.iterrows(
dataset_id=dataset_id,
rows_in_page=-1,
)

View file

@ -7,7 +7,7 @@ from typing import Any, Dict, List, Optional
import datasets as hf_datasets
from llama_stack.apis.datasetio import DatasetIO, PaginatedRowsResult
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
@ -73,36 +73,27 @@ class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def get_rows_paginated(
async def iterrows(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
dataset_def = self.dataset_infos[dataset_id]
loaded_dataset = load_hf_dataset(dataset_def)
if page_token and not page_token.isnumeric():
raise ValueError("Invalid page_token")
start_index = start_index or 0
if page_token is None or len(page_token) == 0:
next_page_token = 0
else:
next_page_token = int(page_token)
start = next_page_token
if rows_in_page == -1:
if limit is None or limit == -1:
end = len(loaded_dataset)
else:
end = min(start + rows_in_page, len(loaded_dataset))
end = min(start_index + limit, len(loaded_dataset))
rows = [loaded_dataset[i] for i in range(start, end)]
rows = [loaded_dataset[i] for i in range(start_index, end)]
return PaginatedRowsResult(
rows=rows,
total_count=len(rows),
next_page_token=str(end),
return IterrowsResponse(
data=rows,
next_index=end if end < len(loaded_dataset) else None,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None: