forked from phoenix-oss/llama-stack-mirror
refactor: extract pagination logic into shared helper function (#1770)
# What does this PR do? Move pagination logic from LocalFS and HuggingFace implementations into a common helper function to ensure consistent pagination behavior across providers. This reduces code duplication and centralizes pagination logic in one place. ## Test Plan Run this script: ``` from llama_stack_client import LlamaStackClient # Initialize the client client = LlamaStackClient(base_url="http://localhost:8321") # Register a dataset response = client.datasets.register( purpose="eval/messages-answer", # or "eval/question-answer" or "post-training/messages" source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"}, dataset_id="my_dataset", # optional, will be auto-generated if not provided metadata={"description": "My evaluation dataset"}, # optional ) # Verify the dataset was registered by listing all datasets datasets = client.datasets.list() print(f"Registered datasets: {[d.identifier for d in datasets]}") # You can then access the data using the datasetio API # rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2) rows = client.datasets.iterrows(dataset_id="my_dataset") print(f"Data: {rows.data}") ``` And play with `start_index` and `limit`. [//]: # (## Documentation) Signed-off-by: Sébastien Han <seb@redhat.com>
This commit is contained in:
parent
d495922949
commit
2ffa2b77ed
9 changed files with 130 additions and 73 deletions
|
@ -6,23 +6,9 @@
|
|||
|
||||
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.apis.common.responses import PaginatedResponse
|
||||
from llama_stack.apis.datasets import Dataset
|
||||
from llama_stack.schema_utils import json_schema_type, webmethod
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class IterrowsResponse(BaseModel):
|
||||
"""
|
||||
A paginated list of rows from a dataset.
|
||||
|
||||
:param data: The rows in the current page.
|
||||
:param next_start_index: Index into dataset for the first row in the next page. None if there are no more rows.
|
||||
"""
|
||||
|
||||
data: List[Dict[str, Any]]
|
||||
next_start_index: Optional[int] = None
|
||||
from llama_stack.schema_utils import webmethod
|
||||
|
||||
|
||||
class DatasetStore(Protocol):
|
||||
|
@ -34,15 +20,22 @@ class DatasetIO(Protocol):
|
|||
# keeping for aligning with inference/safety, but this is not used
|
||||
dataset_store: DatasetStore
|
||||
|
||||
# TODO(xiyan): there's a flakiness here where setting route to "/datasets/" here will not result in proper routing
|
||||
@webmethod(route="/datasetio/iterrows/{dataset_id:path}", method="GET")
|
||||
async def iterrows(
|
||||
self,
|
||||
dataset_id: str,
|
||||
start_index: Optional[int] = None,
|
||||
limit: Optional[int] = None,
|
||||
) -> IterrowsResponse:
|
||||
"""Get a paginated list of rows from a dataset. Uses cursor-based pagination.
|
||||
) -> PaginatedResponse:
|
||||
"""Get a paginated list of rows from a dataset.
|
||||
|
||||
Uses offset-based pagination where:
|
||||
- start_index: The starting index (0-based). If None, starts from beginning.
|
||||
- limit: Number of items to return. If None or -1, returns all items.
|
||||
|
||||
The response includes:
|
||||
- data: List of items for the current page
|
||||
- has_more: Whether there are more items available after this set
|
||||
|
||||
:param dataset_id: The ID of the dataset to get the rows from.
|
||||
:param start_index: Index into dataset for the first row to get. Get all rows if None.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue