forked from phoenix-oss/llama-stack-mirror
[LlamaStack][Fireworks] Update client and add unittest (#390)
This commit is contained in:
parent
cfcc0a871c
commit
31c5fbda5e
2 changed files with 73 additions and 48 deletions
|
@ -9,12 +9,11 @@ from typing import AsyncGenerator
|
|||
from fireworks.client import Fireworks
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.datatypes import Message
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.inference import * # noqa: F403
|
||||
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
|
@ -32,7 +31,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import FireworksImplConfig
|
||||
|
||||
|
||||
FIREWORKS_SUPPORTED_MODELS = {
|
||||
"Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
|
||||
"Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
|
||||
|
@ -41,10 +39,13 @@ FIREWORKS_SUPPORTED_MODELS = {
|
|||
"Llama3.2-3B-Instruct": "fireworks/llama-v3p2-3b-instruct",
|
||||
"Llama3.2-11B-Vision-Instruct": "fireworks/llama-v3p2-11b-vision-instruct",
|
||||
"Llama3.2-90B-Vision-Instruct": "fireworks/llama-v3p2-90b-vision-instruct",
|
||||
"Llama-Guard-3-8B": "fireworks/llama-guard-3-8b",
|
||||
}
|
||||
|
||||
|
||||
class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
||||
class FireworksInferenceAdapter(
|
||||
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
||||
):
|
||||
def __init__(self, config: FireworksImplConfig) -> None:
|
||||
ModelRegistryHelper.__init__(
|
||||
self, stack_to_provider_models_map=FIREWORKS_SUPPORTED_MODELS
|
||||
|
@ -53,11 +54,24 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
self.formatter = ChatFormat(Tokenizer.get_instance())
|
||||
|
||||
async def initialize(self) -> None:
|
||||
return
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
def _get_client(self) -> Fireworks:
|
||||
fireworks_api_key = None
|
||||
if self.config.api_key is not None:
|
||||
fireworks_api_key = self.config.api_key
|
||||
else:
|
||||
provider_data = self.get_request_provider_data()
|
||||
if provider_data is None or not provider_data.fireworks_api_key:
|
||||
raise ValueError(
|
||||
'Pass Fireworks API Key in the header X-LlamaStack-ProviderData as { "fireworks_api_key": <your api key>}'
|
||||
)
|
||||
fireworks_api_key = provider_data.fireworks_api_key
|
||||
return Fireworks(api_key=fireworks_api_key)
|
||||
|
||||
async def completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -75,28 +89,53 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
)
|
||||
client = Fireworks(api_key=self.config.api_key)
|
||||
if stream:
|
||||
return self._stream_completion(request, client)
|
||||
return self._stream_completion(request)
|
||||
else:
|
||||
return await self._nonstream_completion(request, client)
|
||||
return await self._nonstream_completion(request)
|
||||
|
||||
async def _nonstream_completion(
|
||||
self, request: CompletionRequest, client: Fireworks
|
||||
self, request: CompletionRequest
|
||||
) -> CompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
r = await client.completion.acreate(**params)
|
||||
r = await self._get_client().completion.acreate(**params)
|
||||
return process_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_completion(
|
||||
self, request: CompletionRequest, client: Fireworks
|
||||
) -> AsyncGenerator:
|
||||
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
stream = client.completion.acreate(**params)
|
||||
# Wrapper for async generator similar
|
||||
async def _to_async_generator():
|
||||
stream = self._get_client().completion.create(**params)
|
||||
for chunk in stream:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_completion_stream_response(stream, self.formatter):
|
||||
yield chunk
|
||||
|
||||
def _build_options(
|
||||
self, sampling_params: Optional[SamplingParams], fmt: ResponseFormat
|
||||
) -> dict:
|
||||
options = get_sampling_options(sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
||||
if fmt:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
options["response_format"] = {
|
||||
"type": "grammar",
|
||||
"grammar": fmt.bnf,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
return options
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model: str,
|
||||
|
@ -121,32 +160,35 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
logprobs=logprobs,
|
||||
)
|
||||
|
||||
client = Fireworks(api_key=self.config.api_key)
|
||||
if stream:
|
||||
return self._stream_chat_completion(request, client)
|
||||
return self._stream_chat_completion(request)
|
||||
else:
|
||||
return await self._nonstream_chat_completion(request, client)
|
||||
return await self._nonstream_chat_completion(request)
|
||||
|
||||
async def _nonstream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Fireworks
|
||||
self, request: ChatCompletionRequest
|
||||
) -> ChatCompletionResponse:
|
||||
params = await self._get_params(request)
|
||||
if "messages" in params:
|
||||
r = await client.chat.completions.acreate(**params)
|
||||
r = await self._get_client().chat.completions.acreate(**params)
|
||||
else:
|
||||
r = await client.completion.acreate(**params)
|
||||
r = await self._get_client().completion.acreate(**params)
|
||||
return process_chat_completion_response(r, self.formatter)
|
||||
|
||||
async def _stream_chat_completion(
|
||||
self, request: ChatCompletionRequest, client: Fireworks
|
||||
self, request: ChatCompletionRequest
|
||||
) -> AsyncGenerator:
|
||||
params = await self._get_params(request)
|
||||
|
||||
if "messages" in params:
|
||||
stream = client.chat.completions.acreate(**params)
|
||||
else:
|
||||
stream = client.completion.acreate(**params)
|
||||
async def _to_async_generator():
|
||||
if "messages" in params:
|
||||
stream = await self._get_client().chat.completions.acreate(**params)
|
||||
else:
|
||||
stream = self._get_client().completion.create(**params)
|
||||
for chunk in stream:
|
||||
yield chunk
|
||||
|
||||
stream = _to_async_generator()
|
||||
async for chunk in process_chat_completion_stream_response(
|
||||
stream, self.formatter
|
||||
):
|
||||
|
@ -167,41 +209,22 @@ class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
input_dict["prompt"] = chat_completion_request_to_prompt(
|
||||
request, self.formatter
|
||||
)
|
||||
elif isinstance(request, CompletionRequest):
|
||||
else:
|
||||
assert (
|
||||
not media_present
|
||||
), "Fireworks does not support media for Completion requests"
|
||||
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
||||
else:
|
||||
raise ValueError(f"Unknown request type {type(request)}")
|
||||
|
||||
# Fireworks always prepends with BOS
|
||||
if "prompt" in input_dict:
|
||||
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
||||
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
||||
|
||||
options = get_sampling_options(request.sampling_params)
|
||||
options.setdefault("max_tokens", 512)
|
||||
|
||||
if fmt := request.response_format:
|
||||
if fmt.type == ResponseFormatType.json_schema.value:
|
||||
options["response_format"] = {
|
||||
"type": "json_object",
|
||||
"schema": fmt.json_schema,
|
||||
}
|
||||
elif fmt.type == ResponseFormatType.grammar.value:
|
||||
options["response_format"] = {
|
||||
"type": "grammar",
|
||||
"grammar": fmt.bnf,
|
||||
}
|
||||
else:
|
||||
raise ValueError(f"Unknown response format {fmt.type}")
|
||||
|
||||
return {
|
||||
"model": self.map_to_provider_model(request.model),
|
||||
**input_dict,
|
||||
"stream": request.stream,
|
||||
**options,
|
||||
**self._build_options(request.sampling_params, request.response_format),
|
||||
}
|
||||
|
||||
async def embeddings(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue