fix: replace eval with json decoding (#1327)

# What does this PR do?

- Using `eval` on server is a security risk
- Replace `eval` with `json.loads`

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
pytest -v -s --nbval-lax ./llama-stack/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb 
```
<img width="747" alt="image"
src="https://github.com/user-attachments/assets/7aff3d95-0b12-4394-b9d0-aeff791eee38"
/>


[//]: # (## Documentation)
This commit is contained in:
Xi Yan 2025-02-28 11:10:45 -08:00 committed by Ashwin Bharambe
parent 56798fbdda
commit 31c9c6c62f

View file

@ -3,6 +3,7 @@
# #
# This source code is licensed under the terms described in the LICENSE file in # This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree. # the root directory of this source tree.
import json
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
from tqdm import tqdm from tqdm import tqdm
@ -117,7 +118,7 @@ class MetaReferenceEvalImpl(
generations = [] generations = []
for i, x in tqdm(enumerate(input_rows)): for i, x in tqdm(enumerate(input_rows)):
assert ColumnName.chat_completion_input.value in x, "Invalid input row" assert ColumnName.chat_completion_input.value in x, "Invalid input row"
input_messages = eval(str(x[ColumnName.chat_completion_input.value])) input_messages = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = [UserMessage(**x) for x in input_messages] input_messages = [UserMessage(**x) for x in input_messages]
# NOTE: only single-turn agent generation is supported. Create a new session for each input row # NOTE: only single-turn agent generation is supported. Create a new session for each input row
@ -159,7 +160,7 @@ class MetaReferenceEvalImpl(
generations = [] generations = []
for x in tqdm(input_rows): for x in tqdm(input_rows):
if ColumnName.completion_input.value in x: if ColumnName.completion_input.value in x:
input_content = eval(str(x[ColumnName.completion_input.value])) input_content = json.loads(x[ColumnName.completion_input.value])
response = await self.inference_api.completion( response = await self.inference_api.completion(
model=candidate.model, model=candidate.model,
content=input_content, content=input_content,
@ -167,9 +168,8 @@ class MetaReferenceEvalImpl(
) )
generations.append({ColumnName.generated_answer.value: response.completion_message.content}) generations.append({ColumnName.generated_answer.value: response.completion_message.content})
elif ColumnName.chat_completion_input.value in x: elif ColumnName.chat_completion_input.value in x:
chat_completion_input_str = str(x[ColumnName.chat_completion_input.value]) chat_completion_input_json = json.loads(x[ColumnName.chat_completion_input.value])
input_messages = eval(chat_completion_input_str) input_messages = [UserMessage(**x) for x in chat_completion_input_json]
input_messages = [UserMessage(**x) for x in input_messages]
messages = [] messages = []
if candidate.system_message: if candidate.system_message:
messages.append(candidate.system_message) messages.append(candidate.system_message)