forked from phoenix-oss/llama-stack-mirror
feat: add Milvus vectorDB (#1467)
# What does this PR do? See https://github.com/meta-llama/llama-stack/pull/1171 which is the original PR. Author: @zc277584121 feat: add [Milvus](https://milvus.io/) vectorDB note: I use the MilvusClient to implement it instead of AsyncMilvusClient, because when I tested AsyncMilvusClient, it would raise issues about evenloop, which I think AsyncMilvusClient SDK is not robust enough to be compatible with llama_stack framework. ## Test Plan have passed the unit test and ene2end test Here is my end2end test logs, including the client code, client log, server logs from inline and remote settings [test_end2end_logs.zip](https://github.com/user-attachments/files/18964391/test_end2end_logs.zip) --------- Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Cheney Zhang <chen.zhang@zilliz.com>
This commit is contained in:
parent
1e3be1e4d7
commit
330cc9d09d
10 changed files with 310 additions and 2 deletions
|
@ -34,7 +34,7 @@ We are working on adding a few more APIs to complete the application lifecycle.
|
|||
|
||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, FAISS, PGVector, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
|
||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||
|
||||
Providers come in two flavors:
|
||||
|
|
|
@ -68,6 +68,7 @@ A number of "adapters" are available for some popular Inference and Vector Store
|
|||
| FAISS | Single Node |
|
||||
| SQLite-Vec| Single Node |
|
||||
| Chroma | Hosted and Single Node |
|
||||
| Milvus | Hosted and Single Node |
|
||||
| Postgres (PGVector) | Hosted and Single Node |
|
||||
| Weaviate | Hosted |
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
The goal of Llama Stack is to build an ecosystem where users can easily swap out different implementations for the same API. Examples for these include:
|
||||
- LLM inference providers (e.g., Fireworks, Together, AWS Bedrock, Groq, Cerebras, SambaNova, vLLM, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, FAISS, PGVector, etc.),
|
||||
- Vector databases (e.g., ChromaDB, Weaviate, Qdrant, Milvus, FAISS, PGVector, etc.),
|
||||
- Safety providers (e.g., Meta's Llama Guard, AWS Bedrock Guardrails, etc.)
|
||||
|
||||
Providers come in two flavors:
|
||||
|
@ -55,5 +55,6 @@ vector_io/sqlite-vec
|
|||
vector_io/chromadb
|
||||
vector_io/pgvector
|
||||
vector_io/qdrant
|
||||
vector_io/milvus
|
||||
vector_io/weaviate
|
||||
```
|
||||
|
|
31
docs/source/providers/vector_io/mivus.md
Normal file
31
docs/source/providers/vector_io/mivus.md
Normal file
|
@ -0,0 +1,31 @@
|
|||
---
|
||||
orphan: true
|
||||
---
|
||||
# Milvus
|
||||
|
||||
[Milvus](https://milvus.io/) is an inline and remote vector database provider for Llama Stack. It
|
||||
allows you to store and query vectors directly within a Milvus database.
|
||||
That means you're not limited to storing vectors in memory or in a separate service.
|
||||
|
||||
## Features
|
||||
|
||||
- Easy to use
|
||||
- Fully integrated with Llama Stack
|
||||
|
||||
## Usage
|
||||
|
||||
To use Milvus in your Llama Stack project, follow these steps:
|
||||
|
||||
1. Install the necessary dependencies.
|
||||
2. Configure your Llama Stack project to use Milvus.
|
||||
3. Start storing and querying vectors.
|
||||
|
||||
## Installation
|
||||
|
||||
You can install Milvus using pymilvus:
|
||||
|
||||
```bash
|
||||
pip install pymilvus
|
||||
```
|
||||
## Documentation
|
||||
See the [Milvus documentation](https://milvus.io/docs/install-overview.md) for more details about Milvus in general.
|
19
llama_stack/providers/inline/vector_io/milvus/__init__.py
Normal file
19
llama_stack/providers/inline/vector_io/milvus/__init__.py
Normal file
|
@ -0,0 +1,19 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import MilvusVectorIOConfig
|
||||
|
||||
|
||||
async def get_provider_impl(config: MilvusVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusVectorIOAdapter
|
||||
|
||||
impl = MilvusVectorIOAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
20
llama_stack/providers/inline/vector_io/milvus/config.py
Normal file
20
llama_stack/providers/inline/vector_io/milvus/config.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MilvusVectorIOConfig(BaseModel):
|
||||
db_path: str
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {"db_path": "${env.MILVUS_DB_PATH}"}
|
|
@ -110,4 +110,22 @@ def available_providers() -> List[ProviderSpec]:
|
|||
),
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
remote_provider_spec(
|
||||
Api.vector_io,
|
||||
AdapterSpec(
|
||||
adapter_type="milvus",
|
||||
pip_packages=["pymilvus"],
|
||||
module="llama_stack.providers.remote.vector_io.milvus",
|
||||
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
|
||||
),
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
InlineProviderSpec(
|
||||
api=Api.vector_io,
|
||||
provider_type="inline::milvus",
|
||||
pip_packages=["pymilvus"],
|
||||
module="llama_stack.providers.inline.vector_io.milvus",
|
||||
config_class="llama_stack.providers.inline.vector_io.milvus.MilvusVectorIOConfig",
|
||||
api_dependencies=[Api.inference],
|
||||
),
|
||||
]
|
||||
|
|
21
llama_stack/providers/remote/vector_io/milvus/__init__.py
Normal file
21
llama_stack/providers/remote/vector_io/milvus/__init__.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Dict
|
||||
|
||||
from llama_stack.providers.datatypes import Api, ProviderSpec
|
||||
|
||||
from .config import MilvusVectorIOConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: MilvusVectorIOConfig, deps: Dict[Api, ProviderSpec]):
|
||||
from .milvus import MilvusVectorIOAdapter
|
||||
|
||||
assert isinstance(config, MilvusVectorIOConfig), f"Unexpected config type: {type(config)}"
|
||||
|
||||
impl = MilvusVectorIOAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
22
llama_stack/providers/remote/vector_io/milvus/config.py
Normal file
22
llama_stack/providers/remote/vector_io/milvus/config.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from llama_stack.schema_utils import json_schema_type
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class MilvusVectorIOConfig(BaseModel):
|
||||
uri: str
|
||||
token: Optional[str] = None
|
||||
consistency_level: str = "Strong"
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> Dict[str, Any]:
|
||||
return {"uri": "${env.MILVUS_ENDPOINT}", "token": "${env.MILVUS_TOKEN}"}
|
175
llama_stack/providers/remote/vector_io/milvus/milvus.py
Normal file
175
llama_stack/providers/remote/vector_io/milvus/milvus.py
Normal file
|
@ -0,0 +1,175 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import hashlib
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from numpy.typing import NDArray
|
||||
from pymilvus import MilvusClient
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
||||
from .config import MilvusVectorIOConfig as RemoteMilvusVectorIOConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MilvusIndex(EmbeddingIndex):
|
||||
def __init__(self, client: MilvusClient, collection_name: str, consistency_level="Strong"):
|
||||
self.client = client
|
||||
self.collection_name = collection_name.replace("-", "_")
|
||||
self.consistency_level = consistency_level
|
||||
|
||||
async def delete(self):
|
||||
if self.client.has_collection(self.collection_name):
|
||||
self.client.drop_collection(collection_name=self.collection_name)
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(embeddings), (
|
||||
f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
)
|
||||
if not self.client.has_collection(self.collection_name):
|
||||
self.client.create_collection(
|
||||
self.collection_name,
|
||||
dimension=len(embeddings[0]),
|
||||
auto_id=True,
|
||||
consistency_level=self.consistency_level,
|
||||
)
|
||||
|
||||
data = []
|
||||
for chunk, embedding in zip(chunks, embeddings, strict=False):
|
||||
chunk_id = generate_chunk_id(chunk.metadata["document_id"], chunk.content)
|
||||
|
||||
data.append(
|
||||
{
|
||||
"chunk_id": chunk_id,
|
||||
"vector": embedding,
|
||||
"chunk_content": chunk.model_dump(),
|
||||
}
|
||||
)
|
||||
try:
|
||||
self.client.insert(
|
||||
self.collection_name,
|
||||
data=data,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error inserting chunks into Milvus collection {self.collection_name}: {e}")
|
||||
raise e
|
||||
|
||||
async def query(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
search_res = self.client.search(
|
||||
collection_name=self.collection_name,
|
||||
data=[embedding],
|
||||
limit=k,
|
||||
output_fields=["*"],
|
||||
search_params={"params": {"radius": score_threshold}},
|
||||
)
|
||||
chunks = [Chunk(**res["entity"]["chunk_content"]) for res in search_res[0]]
|
||||
scores = [res["distance"] for res in search_res[0]]
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
class MilvusVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self, config: Union[RemoteMilvusVectorIOConfig, InlineMilvusVectorIOConfig], inference_api: Api.inference
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.cache = {}
|
||||
self.client = None
|
||||
self.inference_api = inference_api
|
||||
|
||||
async def initialize(self) -> None:
|
||||
if isinstance(self.config, RemoteMilvusVectorIOConfig):
|
||||
logger.info(f"Connecting to Milvus server at {self.config.uri}")
|
||||
self.client = MilvusClient(**self.config.model_dump(exclude_none=True))
|
||||
else:
|
||||
logger.info(f"Connecting to Milvus Lite at: {self.config.db_path}")
|
||||
uri = os.path.expanduser(self.config.db_path)
|
||||
self.client = MilvusClient(uri=uri)
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
|
||||
async def register_vector_db(
|
||||
self,
|
||||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
if isinstance(self.config, RemoteMilvusVectorIOConfig):
|
||||
consistency_level = self.config.consistency_level
|
||||
else:
|
||||
consistency_level = "Strong"
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=MilvusIndex(self.client, vector_db.identifier, consistency_level=consistency_level),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> Optional[VectorDBWithIndex]:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=MilvusIndex(client=self.client, collection_name=vector_db.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
if vector_db_id in self.cache:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
|
||||
def generate_chunk_id(document_id: str, chunk_text: str) -> str:
|
||||
"""Generate a unique chunk ID using a hash of document ID and chunk text."""
|
||||
hash_input = f"{document_id}:{chunk_text}".encode("utf-8")
|
||||
return str(uuid.UUID(hashlib.md5(hash_input).hexdigest()))
|
||||
|
||||
|
||||
# TODO: refactor this generate_chunk_id along with the `sqlite-vec` implementation into a separate utils file
|
Loading…
Add table
Add a link
Reference in a new issue