feat: add Milvus vectorDB (#1467)

# What does this PR do?
See https://github.com/meta-llama/llama-stack/pull/1171 which is the
original PR. Author: @zc277584121

feat: add [Milvus](https://milvus.io/) vectorDB

note: I use the MilvusClient to implement it instead of
AsyncMilvusClient, because when I tested AsyncMilvusClient, it would
raise issues about evenloop, which I think AsyncMilvusClient SDK is not
robust enough to be compatible with llama_stack framework.

## Test Plan
have passed the unit test and ene2end test
Here is my end2end test logs, including the client code, client log,
server logs from inline and remote settings

[test_end2end_logs.zip](https://github.com/user-attachments/files/18964391/test_end2end_logs.zip)

---------

Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Cheney Zhang <chen.zhang@zilliz.com>
This commit is contained in:
Ashwin Bharambe 2025-03-06 20:59:31 -08:00 committed by GitHub
parent 1e3be1e4d7
commit 330cc9d09d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 310 additions and 2 deletions

View file

@ -110,4 +110,22 @@ def available_providers() -> List[ProviderSpec]:
),
api_dependencies=[Api.inference],
),
remote_provider_spec(
Api.vector_io,
AdapterSpec(
adapter_type="milvus",
pip_packages=["pymilvus"],
module="llama_stack.providers.remote.vector_io.milvus",
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
),
api_dependencies=[Api.inference],
),
InlineProviderSpec(
api=Api.vector_io,
provider_type="inline::milvus",
pip_packages=["pymilvus"],
module="llama_stack.providers.inline.vector_io.milvus",
config_class="llama_stack.providers.inline.vector_io.milvus.MilvusVectorIOConfig",
api_dependencies=[Api.inference],
),
]