forked from phoenix-oss/llama-stack-mirror
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
parent
4773092dd1
commit
34ab7a3b6c
217 changed files with 981 additions and 2681 deletions
|
@ -59,10 +59,7 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
if stored_data:
|
||||
data = json.loads(stored_data)
|
||||
self.chunk_by_index = {
|
||||
int(k): Chunk.model_validate_json(v)
|
||||
for k, v in data["chunk_by_index"].items()
|
||||
}
|
||||
self.chunk_by_index = {int(k): Chunk.model_validate_json(v) for k, v in data["chunk_by_index"].items()}
|
||||
|
||||
buffer = io.BytesIO(base64.b64decode(data["faiss_index"]))
|
||||
self.index = faiss.deserialize_index(np.loadtxt(buffer, dtype=np.uint8))
|
||||
|
@ -75,9 +72,7 @@ class FaissIndex(EmbeddingIndex):
|
|||
buffer = io.BytesIO()
|
||||
np.savetxt(buffer, np_index)
|
||||
data = {
|
||||
"chunk_by_index": {
|
||||
k: v.model_dump_json() for k, v in self.chunk_by_index.items()
|
||||
},
|
||||
"chunk_by_index": {k: v.model_dump_json() for k, v in self.chunk_by_index.items()},
|
||||
"faiss_index": base64.b64encode(buffer.getvalue()).decode("utf-8"),
|
||||
}
|
||||
|
||||
|
@ -92,13 +87,9 @@ class FaissIndex(EmbeddingIndex):
|
|||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
# Add dimension check
|
||||
embedding_dim = (
|
||||
embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
|
||||
)
|
||||
embedding_dim = embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
|
||||
if embedding_dim != self.index.d:
|
||||
raise ValueError(
|
||||
f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}"
|
||||
)
|
||||
raise ValueError(f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}")
|
||||
|
||||
indexlen = len(self.chunk_by_index)
|
||||
for i, chunk in enumerate(chunks):
|
||||
|
@ -109,12 +100,8 @@ class FaissIndex(EmbeddingIndex):
|
|||
# Save updated index
|
||||
await self._save_index()
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryChunksResponse:
|
||||
distances, indices = self.index.search(
|
||||
embedding.reshape(1, -1).astype(np.float32), k
|
||||
)
|
||||
async def query(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse:
|
||||
distances, indices = self.index.search(embedding.reshape(1, -1).astype(np.float32), k)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
|
@ -145,9 +132,7 @@ class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate):
|
|||
vector_db = VectorDB.model_validate_json(vector_db_data)
|
||||
index = VectorDBWithIndex(
|
||||
vector_db,
|
||||
await FaissIndex.create(
|
||||
vector_db.embedding_dimension, self.kvstore, vector_db.identifier
|
||||
),
|
||||
await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier),
|
||||
self.inference_api,
|
||||
)
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
@ -169,9 +154,7 @@ class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate):
|
|||
# Store in cache
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=await FaissIndex.create(
|
||||
vector_db.embedding_dimension, self.kvstore, vector_db.identifier
|
||||
),
|
||||
index=await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
|
@ -195,9 +178,7 @@ class FaissVectorIOImpl(VectorIO, VectorDBsProtocolPrivate):
|
|||
) -> None:
|
||||
index = self.cache.get(vector_db_id)
|
||||
if index is None:
|
||||
raise ValueError(
|
||||
f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}"
|
||||
)
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}")
|
||||
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue