forked from phoenix-oss/llama-stack-mirror
Fix precommit check after moving to ruff (#927)
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
This commit is contained in:
parent
4773092dd1
commit
34ab7a3b6c
217 changed files with 981 additions and 2681 deletions
|
@ -101,9 +101,7 @@ def test_text_completion_streaming(llama_stack_client, text_model_id):
|
|||
assert len(content_str) > 10
|
||||
|
||||
|
||||
def test_completion_log_probs_non_streaming(
|
||||
llama_stack_client, text_model_id, inference_provider_type
|
||||
):
|
||||
def test_completion_log_probs_non_streaming(llama_stack_client, text_model_id, inference_provider_type):
|
||||
if inference_provider_type not in PROVIDER_LOGPROBS_TOP_K:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support log probs yet")
|
||||
|
||||
|
@ -119,15 +117,11 @@ def test_completion_log_probs_non_streaming(
|
|||
},
|
||||
)
|
||||
assert response.logprobs, "Logprobs should not be empty"
|
||||
assert (
|
||||
1 <= len(response.logprobs) <= 5
|
||||
) # each token has 1 logprob and here max_tokens=5
|
||||
assert 1 <= len(response.logprobs) <= 5 # each token has 1 logprob and here max_tokens=5
|
||||
assert all(len(logprob.logprobs_by_token) == 1 for logprob in response.logprobs)
|
||||
|
||||
|
||||
def test_completion_log_probs_streaming(
|
||||
llama_stack_client, text_model_id, inference_provider_type
|
||||
):
|
||||
def test_completion_log_probs_streaming(llama_stack_client, text_model_id, inference_provider_type):
|
||||
if inference_provider_type not in PROVIDER_LOGPROBS_TOP_K:
|
||||
pytest.xfail(f"{inference_provider_type} doesn't support log probs yet")
|
||||
|
||||
|
@ -146,16 +140,12 @@ def test_completion_log_probs_streaming(
|
|||
for chunk in streamed_content:
|
||||
if chunk.delta: # if there's a token, we expect logprobs
|
||||
assert chunk.logprobs, "Logprobs should not be empty"
|
||||
assert all(
|
||||
len(logprob.logprobs_by_token) == 1 for logprob in chunk.logprobs
|
||||
)
|
||||
assert all(len(logprob.logprobs_by_token) == 1 for logprob in chunk.logprobs)
|
||||
else: # no token, no logprobs
|
||||
assert not chunk.logprobs, "Logprobs should be empty"
|
||||
|
||||
|
||||
def test_text_completion_structured_output(
|
||||
llama_stack_client, text_model_id, inference_provider_type
|
||||
):
|
||||
def test_text_completion_structured_output(llama_stack_client, text_model_id, inference_provider_type):
|
||||
user_input = """
|
||||
Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003.
|
||||
"""
|
||||
|
@ -190,9 +180,7 @@ def test_text_completion_structured_output(
|
|||
("What are the names of the planets that have rings around them?", "Saturn"),
|
||||
],
|
||||
)
|
||||
def test_text_chat_completion_non_streaming(
|
||||
llama_stack_client, text_model_id, question, expected
|
||||
):
|
||||
def test_text_chat_completion_non_streaming(llama_stack_client, text_model_id, question, expected):
|
||||
response = llama_stack_client.inference.chat_completion(
|
||||
model_id=text_model_id,
|
||||
messages=[
|
||||
|
@ -215,17 +203,13 @@ def test_text_chat_completion_non_streaming(
|
|||
("What is the name of the US captial?", "Washington"),
|
||||
],
|
||||
)
|
||||
def test_text_chat_completion_streaming(
|
||||
llama_stack_client, text_model_id, question, expected
|
||||
):
|
||||
def test_text_chat_completion_streaming(llama_stack_client, text_model_id, question, expected):
|
||||
response = llama_stack_client.inference.chat_completion(
|
||||
model_id=text_model_id,
|
||||
messages=[{"role": "user", "content": question}],
|
||||
stream=True,
|
||||
)
|
||||
streamed_content = [
|
||||
str(chunk.event.delta.text.lower().strip()) for chunk in response
|
||||
]
|
||||
streamed_content = [str(chunk.event.delta.text.lower().strip()) for chunk in response]
|
||||
assert len(streamed_content) > 0
|
||||
assert expected.lower() in "".join(streamed_content)
|
||||
|
||||
|
@ -251,9 +235,7 @@ def test_text_chat_completion_with_tool_calling_and_non_streaming(
|
|||
|
||||
assert len(response.completion_message.tool_calls) == 1
|
||||
assert response.completion_message.tool_calls[0].tool_name == "get_weather"
|
||||
assert response.completion_message.tool_calls[0].arguments == {
|
||||
"location": "San Francisco, CA"
|
||||
}
|
||||
assert response.completion_message.tool_calls[0].arguments == {"location": "San Francisco, CA"}
|
||||
|
||||
|
||||
# Will extract streamed text and separate it from tool invocation content
|
||||
|
@ -287,9 +269,7 @@ def test_text_chat_completion_with_tool_calling_and_streaming(
|
|||
assert tool_invocation_content == "[get_weather, {'location': 'San Francisco, CA'}]"
|
||||
|
||||
|
||||
def test_text_chat_completion_structured_output(
|
||||
llama_stack_client, text_model_id, inference_provider_type
|
||||
):
|
||||
def test_text_chat_completion_structured_output(llama_stack_client, text_model_id, inference_provider_type):
|
||||
class AnswerFormat(BaseModel):
|
||||
first_name: str
|
||||
last_name: str
|
||||
|
@ -382,9 +362,7 @@ def test_image_chat_completion_streaming(llama_stack_client, vision_model_id):
|
|||
|
||||
|
||||
@pytest.mark.parametrize("type_", ["url", "data"])
|
||||
def test_image_chat_completion_base64(
|
||||
llama_stack_client, vision_model_id, base64_image_data, base64_image_url, type_
|
||||
):
|
||||
def test_image_chat_completion_base64(llama_stack_client, vision_model_id, base64_image_data, base64_image_url, type_):
|
||||
image_spec = {
|
||||
"url": {
|
||||
"type": "image",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue