diff --git a/llama_stack/providers/remote/vector_io/qdrant/__init__.py b/llama_stack/providers/remote/vector_io/qdrant/__init__.py index 54605fcf9..c584e29ef 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/__init__.py +++ b/llama_stack/providers/remote/vector_io/qdrant/__init__.py @@ -12,8 +12,8 @@ from .config import QdrantConfig async def get_adapter_impl(config: QdrantConfig, deps: Dict[Api, ProviderSpec]): - from .qdrant import QdrantVectorMemoryAdapter + from .qdrant import QdrantVectorDBAdapter - impl = QdrantVectorMemoryAdapter(config, deps[Api.inference]) + impl = QdrantVectorDBAdapter(config, deps[Api.inference]) await impl.initialize() return impl diff --git a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py index 719070528..e7ad136eb 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py +++ b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py @@ -55,7 +55,7 @@ class QdrantIndex(EmbeddingIndex): points = [] for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)): - chunk_id = f"{chunk.document_id}:chunk-{i}" + chunk_id = f"{chunk.metadata['document_id']}:chunk-{i}" points.append( PointStruct( id=convert_id(chunk_id), @@ -93,6 +93,9 @@ class QdrantIndex(EmbeddingIndex): return QueryChunksResponse(chunks=chunks, scores=scores) + async def delete(self): + await self.client.delete_collection(collection_name=self.collection_name) + class QdrantVectorDBAdapter(VectorIO, VectorDBsProtocolPrivate): def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None: