[memory refactor][1/n] Rename Memory -> VectorIO, MemoryBanks -> VectorDBs (#828)

See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

This is the first part:

- delete other kinds of memory banks (keyvalue, keyword, graph) for now;
we will introduce a keyvalue store API as part of this design but not
use it in the RAG tool yet.
- renaming of the APIs
This commit is contained in:
Ashwin Bharambe 2025-01-22 09:59:30 -08:00 committed by GitHub
parent 35a00d004a
commit 3ae8585b65
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
37 changed files with 175 additions and 296 deletions

View file

@ -33,7 +33,6 @@ from llama_stack.apis.inference import (
ToolResponseMessage,
UserMessage,
)
from llama_stack.apis.memory import MemoryBank
from llama_stack.apis.safety import SafetyViolation
from llama_stack.apis.tools import ToolDef
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@ -133,8 +132,6 @@ class Session(BaseModel):
turns: List[Turn]
started_at: datetime
memory_bank: Optional[MemoryBank] = None
class AgentToolGroupWithArgs(BaseModel):
name: str

View file

@ -14,7 +14,7 @@ class Api(Enum):
inference = "inference"
safety = "safety"
agents = "agents"
memory = "memory"
vector_io = "vector_io"
datasetio = "datasetio"
scoring = "scoring"
eval = "eval"
@ -25,7 +25,7 @@ class Api(Enum):
models = "models"
shields = "shields"
memory_banks = "memory_banks"
vector_dbs = "vector_dbs"
datasets = "datasets"
scoring_functions = "scoring_functions"
eval_tasks = "eval_tasks"

View file

@ -1,161 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import (
Annotated,
List,
Literal,
Optional,
Protocol,
runtime_checkable,
Union,
)
from llama_models.schema_utils import json_schema_type, register_schema, webmethod
from pydantic import BaseModel, Field
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@json_schema_type
class MemoryBankType(Enum):
vector = "vector"
keyvalue = "keyvalue"
keyword = "keyword"
graph = "graph"
# define params for each type of memory bank, this leads to a tagged union
# accepted as input from the API or from the config.
@json_schema_type
class VectorMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
embedding_model: str
chunk_size_in_tokens: int
overlap_size_in_tokens: Optional[int] = None
@json_schema_type
class KeyValueMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.keyvalue.value] = (
MemoryBankType.keyvalue.value
)
@json_schema_type
class KeywordMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.keyword.value] = (
MemoryBankType.keyword.value
)
@json_schema_type
class GraphMemoryBankParams(BaseModel):
memory_bank_type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
BankParams = Annotated[
Union[
VectorMemoryBankParams,
KeyValueMemoryBankParams,
KeywordMemoryBankParams,
GraphMemoryBankParams,
],
Field(discriminator="memory_bank_type"),
]
# Some common functionality for memory banks.
class MemoryBankResourceMixin(Resource):
type: Literal[ResourceType.memory_bank.value] = ResourceType.memory_bank.value
@property
def memory_bank_id(self) -> str:
return self.identifier
@property
def provider_memory_bank_id(self) -> str:
return self.provider_resource_id
@json_schema_type
class VectorMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.vector.value] = MemoryBankType.vector.value
embedding_model: str
chunk_size_in_tokens: int
embedding_dimension: Optional[int] = 384 # default to minilm-l6-v2
overlap_size_in_tokens: Optional[int] = None
@json_schema_type
class KeyValueMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.keyvalue.value] = (
MemoryBankType.keyvalue.value
)
# TODO: KeyValue and Keyword are so similar in name, oof. Get a better naming convention.
@json_schema_type
class KeywordMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.keyword.value] = (
MemoryBankType.keyword.value
)
@json_schema_type
class GraphMemoryBank(MemoryBankResourceMixin):
memory_bank_type: Literal[MemoryBankType.graph.value] = MemoryBankType.graph.value
MemoryBank = register_schema(
Annotated[
Union[
VectorMemoryBank,
KeyValueMemoryBank,
KeywordMemoryBank,
GraphMemoryBank,
],
Field(discriminator="memory_bank_type"),
],
name="MemoryBank",
)
class MemoryBankInput(BaseModel):
memory_bank_id: str
params: BankParams
provider_memory_bank_id: Optional[str] = None
class ListMemoryBanksResponse(BaseModel):
data: List[MemoryBank]
@runtime_checkable
@trace_protocol
class MemoryBanks(Protocol):
@webmethod(route="/memory-banks", method="GET")
async def list_memory_banks(self) -> ListMemoryBanksResponse: ...
@webmethod(route="/memory-banks/{memory_bank_id}", method="GET")
async def get_memory_bank(
self,
memory_bank_id: str,
) -> Optional[MemoryBank]: ...
@webmethod(route="/memory-banks", method="POST")
async def register_memory_bank(
self,
memory_bank_id: str,
params: BankParams,
provider_id: Optional[str] = None,
provider_memory_bank_id: Optional[str] = None,
) -> MemoryBank: ...
@webmethod(route="/memory-banks/{memory_bank_id}", method="DELETE")
async def unregister_memory_bank(self, memory_bank_id: str) -> None: ...

View file

@ -14,7 +14,7 @@ from pydantic import BaseModel, Field
class ResourceType(Enum):
model = "model"
shield = "shield"
memory_bank = "memory_bank"
vector_db = "vector_db"
dataset = "dataset"
scoring_function = "scoring_function"
eval_task = "eval_task"

View file

@ -4,4 +4,4 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .memory_banks import * # noqa: F401 F403
from .vector_dbs import * # noqa: F401 F403

View file

@ -0,0 +1,66 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Literal, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@json_schema_type
class VectorDB(Resource):
type: Literal[ResourceType.vector_db.value] = ResourceType.vector_db.value
embedding_model: str
embedding_dimension: int
@property
def vector_db_id(self) -> str:
return self.identifier
@property
def provider_vector_db_id(self) -> str:
return self.provider_resource_id
class VectorDBInput(BaseModel):
vector_db_id: str
embedding_model: str
embedding_dimension: int
provider_vector_db_id: Optional[str] = None
class ListVectorDBsResponse(BaseModel):
data: List[VectorDB]
@runtime_checkable
@trace_protocol
class VectorDBs(Protocol):
@webmethod(route="/vector-dbs", method="GET")
async def list_vector_dbs(self) -> ListVectorDBsResponse: ...
@webmethod(route="/vector-dbs/{vector_db_id}", method="GET")
async def get_vector_db(
self,
vector_db_id: str,
) -> Optional[VectorDB]: ...
@webmethod(route="/vector-dbs", method="POST")
async def register_vector_db(
self,
vector_db_id: str,
embedding_model: str,
embedding_dimension: Optional[int] = 384,
provider_id: Optional[str] = None,
provider_vector_db_id: Optional[str] = None,
) -> VectorDB: ...
@webmethod(route="/vector-dbs/{vector_db_id}", method="DELETE")
async def unregister_vector_db(self, vector_db_id: str) -> None: ...

View file

@ -4,4 +4,4 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .memory import * # noqa: F401 F403
from .vector_io import * # noqa: F401 F403

View file

@ -13,55 +13,45 @@ from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel, Field
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.memory_banks import MemoryBank
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
@json_schema_type
class MemoryBankDocument(BaseModel):
document_id: str
content: InterleavedContent | URL
mime_type: str | None = None
metadata: Dict[str, Any] = Field(default_factory=dict)
class Chunk(BaseModel):
content: InterleavedContent
token_count: int
document_id: str
metadata: Dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class QueryDocumentsResponse(BaseModel):
class QueryChunksResponse(BaseModel):
chunks: List[Chunk]
scores: List[float]
class MemoryBankStore(Protocol):
def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]: ...
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> Optional[VectorDB]: ...
@runtime_checkable
@trace_protocol
class Memory(Protocol):
memory_bank_store: MemoryBankStore
class VectorIO(Protocol):
vector_db_store: VectorDBStore
# this will just block now until documents are inserted, but it should
# probably return a Job instance which can be polled for completion
@webmethod(route="/memory/insert", method="POST")
async def insert_documents(
@webmethod(route="/vector-io/insert", method="POST")
async def insert_chunks(
self,
bank_id: str,
documents: List[MemoryBankDocument],
vector_db_id: str,
chunks: List[Chunk],
ttl_seconds: Optional[int] = None,
) -> None: ...
@webmethod(route="/memory/query", method="POST")
async def query_documents(
@webmethod(route="/vector-io/query", method="POST")
async def query_chunks(
self,
bank_id: str,
vector_db_id: str,
query: InterleavedContent,
params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse: ...
) -> QueryChunksResponse: ...