forked from phoenix-oss/llama-stack-mirror
[memory refactor][1/n] Rename Memory -> VectorIO, MemoryBanks -> VectorDBs (#828)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This is the first part: - delete other kinds of memory banks (keyvalue, keyword, graph) for now; we will introduce a keyvalue store API as part of this design but not use it in the RAG tool yet. - renaming of the APIs
This commit is contained in:
parent
35a00d004a
commit
3ae8585b65
37 changed files with 175 additions and 296 deletions
57
llama_stack/apis/vector_io/vector_io.py
Normal file
57
llama_stack/apis/vector_io/vector_io.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
||||
|
||||
from llama_models.schema_utils import json_schema_type, webmethod
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
||||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
content: InterleavedContent
|
||||
metadata: Dict[str, Any] = Field(default_factory=dict)
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class QueryChunksResponse(BaseModel):
|
||||
chunks: List[Chunk]
|
||||
scores: List[float]
|
||||
|
||||
|
||||
class VectorDBStore(Protocol):
|
||||
def get_vector_db(self, vector_db_id: str) -> Optional[VectorDB]: ...
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
@trace_protocol
|
||||
class VectorIO(Protocol):
|
||||
vector_db_store: VectorDBStore
|
||||
|
||||
# this will just block now until documents are inserted, but it should
|
||||
# probably return a Job instance which can be polled for completion
|
||||
@webmethod(route="/vector-io/insert", method="POST")
|
||||
async def insert_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None: ...
|
||||
|
||||
@webmethod(route="/vector-io/query", method="POST")
|
||||
async def query_chunks(
|
||||
self,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryChunksResponse: ...
|
Loading…
Add table
Add a link
Reference in a new issue