forked from phoenix-oss/llama-stack-mirror
[memory refactor][1/n] Rename Memory -> VectorIO, MemoryBanks -> VectorDBs (#828)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This is the first part: - delete other kinds of memory banks (keyvalue, keyword, graph) for now; we will introduce a keyvalue store API as part of this design but not use it in the RAG tool yet. - renaming of the APIs
This commit is contained in:
parent
35a00d004a
commit
3ae8585b65
37 changed files with 175 additions and 296 deletions
203
llama_stack/providers/remote/vector_io/weaviate/weaviate.py
Normal file
203
llama_stack/providers/remote/vector_io/weaviate/weaviate.py
Normal file
|
@ -0,0 +1,203 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import json
|
||||
import logging
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import weaviate
|
||||
import weaviate.classes as wvc
|
||||
from numpy.typing import NDArray
|
||||
from weaviate.classes.init import Auth
|
||||
from weaviate.classes.query import Filter
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.memory import (
|
||||
Chunk,
|
||||
Memory,
|
||||
MemoryBankDocument,
|
||||
QueryDocumentsResponse,
|
||||
)
|
||||
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
|
||||
from .config import WeaviateConfig, WeaviateRequestProviderData
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WeaviateIndex(EmbeddingIndex):
|
||||
def __init__(self, client: weaviate.Client, collection_name: str):
|
||||
self.client = client
|
||||
self.collection_name = collection_name
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
assert len(chunks) == len(
|
||||
embeddings
|
||||
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
||||
|
||||
data_objects = []
|
||||
for i, chunk in enumerate(chunks):
|
||||
data_objects.append(
|
||||
wvc.data.DataObject(
|
||||
properties={
|
||||
"chunk_content": chunk.json(),
|
||||
},
|
||||
vector=embeddings[i].tolist(),
|
||||
)
|
||||
)
|
||||
|
||||
# Inserting chunks into a prespecified Weaviate collection
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
||||
# TODO: make this async friendly
|
||||
collection.data.insert_many(data_objects)
|
||||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
||||
results = collection.query.near_vector(
|
||||
near_vector=embedding.tolist(),
|
||||
limit=k,
|
||||
return_metadata=wvc.query.MetadataQuery(distance=True),
|
||||
)
|
||||
|
||||
chunks = []
|
||||
scores = []
|
||||
for doc in results.objects:
|
||||
chunk_json = doc.properties["chunk_content"]
|
||||
try:
|
||||
chunk_dict = json.loads(chunk_json)
|
||||
chunk = Chunk(**chunk_dict)
|
||||
except Exception:
|
||||
log.exception(f"Failed to parse document: {chunk_json}")
|
||||
continue
|
||||
|
||||
chunks.append(chunk)
|
||||
scores.append(1.0 / doc.metadata.distance)
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self, chunk_ids: List[str]) -> None:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
collection.data.delete_many(
|
||||
where=Filter.by_property("id").contains_any(chunk_ids)
|
||||
)
|
||||
|
||||
|
||||
class WeaviateMemoryAdapter(
|
||||
Memory,
|
||||
NeedsRequestProviderData,
|
||||
MemoryBanksProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: WeaviateConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
self.client_cache = {}
|
||||
self.cache = {}
|
||||
|
||||
def _get_client(self) -> weaviate.Client:
|
||||
provider_data = self.get_request_provider_data()
|
||||
assert provider_data is not None, "Request provider data must be set"
|
||||
assert isinstance(provider_data, WeaviateRequestProviderData)
|
||||
|
||||
key = f"{provider_data.weaviate_cluster_url}::{provider_data.weaviate_api_key}"
|
||||
if key in self.client_cache:
|
||||
return self.client_cache[key]
|
||||
|
||||
client = weaviate.connect_to_weaviate_cloud(
|
||||
cluster_url=provider_data.weaviate_cluster_url,
|
||||
auth_credentials=Auth.api_key(provider_data.weaviate_api_key),
|
||||
)
|
||||
self.client_cache[key] = client
|
||||
return client
|
||||
|
||||
async def initialize(self) -> None:
|
||||
pass
|
||||
|
||||
async def shutdown(self) -> None:
|
||||
for client in self.client_cache.values():
|
||||
client.close()
|
||||
|
||||
async def register_memory_bank(
|
||||
self,
|
||||
memory_bank: MemoryBank,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
client = self._get_client()
|
||||
|
||||
# Create collection if it doesn't exist
|
||||
if not client.collections.exists(memory_bank.identifier):
|
||||
client.collections.create(
|
||||
name=memory_bank.identifier,
|
||||
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
||||
properties=[
|
||||
wvc.config.Property(
|
||||
name="chunk_content",
|
||||
data_type=wvc.config.DataType.TEXT,
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank,
|
||||
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||
self.inference_api,
|
||||
)
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
client = self._get_client()
|
||||
if not client.collections.exists(bank.identifier):
|
||||
raise ValueError(f"Collection with name `{bank.identifier}` not found")
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=WeaviateIndex(client=client, collection_name=bank_id),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
return index
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
await index.insert_documents(documents)
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
bank_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
return await index.query_documents(query, params)
|
Loading…
Add table
Add a link
Reference in a new issue