completion() for tgi (#295)

This commit is contained in:
Dinesh Yeduguru 2024-10-24 16:02:41 -07:00 committed by GitHub
parent cb84034567
commit 3e1c3fdb3f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 173 additions and 35 deletions

View file

@ -24,9 +24,12 @@ from llama_stack.providers.utils.inference.openai_compat import (
OpenAICompatCompletionResponse,
process_chat_completion_response,
process_chat_completion_stream_response,
process_completion_response,
process_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_model_input_info,
completion_request_to_prompt_model_input_info,
)
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
@ -75,7 +78,98 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError()
request = CompletionRequest(
model=model,
content=content,
sampling_params=sampling_params,
response_format=response_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_completion(request)
else:
return await self._nonstream_completion(request)
def _get_max_new_tokens(self, sampling_params, input_tokens):
return min(
sampling_params.max_tokens or (self.max_tokens - input_tokens),
self.max_tokens - input_tokens - 1,
)
def _build_options(
self,
sampling_params: Optional[SamplingParams] = None,
fmt: ResponseFormat = None,
):
options = get_sampling_options(sampling_params)
# delete key "max_tokens" from options since its not supported by the API
options.pop("max_tokens", None)
if fmt:
if fmt.type == ResponseFormatType.json_schema.value:
options["grammar"] = {
"type": "json",
"value": fmt.schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
raise ValueError("Grammar response format not supported yet")
else:
raise ValueError(f"Unexpected response format: {fmt.type}")
return options
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
prompt, input_tokens = completion_request_to_prompt_model_input_info(
request, self.formatter
)
return dict(
prompt=prompt,
stream=request.stream,
details=True,
max_new_tokens=self._get_max_new_tokens(
request.sampling_params, input_tokens
),
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**self._build_options(request.sampling_params, request.response_format),
)
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params_for_completion(request)
async def _generate_and_convert_to_openai_compat():
s = await self.client.text_generation(**params)
async for chunk in s:
token_result = chunk.token
finish_reason = None
if chunk.details:
finish_reason = chunk.details.finish_reason
choice = OpenAICompatCompletionChoice(
text=token_result.text, finish_reason=finish_reason
)
yield OpenAICompatCompletionResponse(
choices=[choice],
)
stream = _generate_and_convert_to_openai_compat()
async for chunk in process_completion_stream_response(stream, self.formatter):
yield chunk
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
params = self._get_params_for_completion(request)
r = await self.client.text_generation(**params)
choice = OpenAICompatCompletionChoice(
finish_reason=r.details.finish_reason,
text="".join(t.text for t in r.details.tokens),
)
response = OpenAICompatCompletionResponse(
choices=[choice],
)
return process_completion_response(response, self.formatter)
async def chat_completion(
self,
@ -146,29 +240,15 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
prompt, input_tokens = chat_completion_request_to_model_input_info(
request, self.formatter
)
max_new_tokens = min(
request.sampling_params.max_tokens or (self.max_tokens - input_tokens),
self.max_tokens - input_tokens - 1,
)
options = get_sampling_options(request)
if fmt := request.response_format:
if fmt.type == ResponseFormatType.json_schema.value:
options["grammar"] = {
"type": "json",
"value": fmt.schema,
}
elif fmt.type == ResponseFormatType.grammar.value:
raise ValueError("Grammar response format not supported yet")
else:
raise ValueError(f"Unexpected response format: {fmt.type}")
return dict(
prompt=prompt,
stream=request.stream,
details=True,
max_new_tokens=max_new_tokens,
max_new_tokens=self._get_max_new_tokens(
request.sampling_params, input_tokens
),
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
**self._build_options(request.sampling_params, request.response_format),
)
async def embeddings(