[bugfix] fix inference sdk test for v1 (#775)

# What does this PR do?
- fixes client sdk tests

## Test Plan

```
LLAMA_STACK_BASE_URL="http://localhost:5000" pytest -v tests/client-sdk/inference/test_inference.py
```

<img width="1359" alt="image"
src="https://github.com/user-attachments/assets/a720e0ca-c441-465e-bc6b-9b98091afa23"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2025-01-15 15:52:26 -08:00 committed by GitHub
parent 67450e4024
commit 3e518c049a
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -28,19 +28,18 @@ def provider_tool_format(inference_provider_type):
@pytest.fixture(scope="session")
def inference_provider_type(llama_stack_client):
providers = llama_stack_client.providers.list()
if "inference" not in providers:
pytest.fail("No inference providers available")
assert len(providers["inference"]) > 0
return providers["inference"][0].provider_type
assert len(providers.inference) > 0
return providers.inference[0]["provider_type"]
@pytest.fixture(scope="session")
def text_model_id(llama_stack_client):
available_models = [
model.identifier
for model in llama_stack_client.models.list()
for model in llama_stack_client.models.list().data
if model.identifier.startswith("meta-llama") and "405" not in model.identifier
]
print(available_models)
assert len(available_models) > 0
return available_models[0]
@ -49,7 +48,7 @@ def text_model_id(llama_stack_client):
def vision_model_id(llama_stack_client):
available_models = [
model.identifier
for model in llama_stack_client.models.list()
for model in llama_stack_client.models.list().data
if "vision" in model.identifier.lower()
]
if len(available_models) == 0:
@ -245,19 +244,13 @@ def test_text_chat_completion_with_tool_calling_and_non_streaming(
# The returned tool inovcation content will be a string so it's easy to comapare with expected value
# e.g. "[get_weather, {'location': 'San Francisco, CA'}]"
def extract_tool_invocation_content(response):
text_content: str = ""
tool_invocation_content: str = ""
for chunk in response:
delta = chunk.event.delta
if delta.type == "text":
text_content += delta.text
elif delta.type == "tool_call":
if isinstance(delta.content, str):
tool_invocation_content += delta.content
else:
call = delta.content
tool_invocation_content += f"[{call.tool_name}, {call.arguments}]"
return text_content, tool_invocation_content
if delta.type == "tool_call" and delta.parse_status == "succeeded":
call = delta.content
tool_invocation_content += f"[{call.tool_name}, {call.arguments}]"
return tool_invocation_content
def test_text_chat_completion_with_tool_calling_and_streaming(
@ -274,8 +267,11 @@ def test_text_chat_completion_with_tool_calling_and_streaming(
tool_prompt_format=provider_tool_format,
stream=True,
)
text_content, tool_invocation_content = extract_tool_invocation_content(response)
tool_invocation_content = extract_tool_invocation_content(response)
print(
"!!!!tool_invocation_content",
tool_invocation_content,
)
assert tool_invocation_content == "[get_weather, {'location': 'San Francisco, CA'}]"
@ -362,8 +358,8 @@ def test_image_chat_completion_streaming(llama_stack_client, vision_model_id):
messages=[message],
stream=True,
)
streamed_content = [
str(chunk.event.delta.text.lower().strip()) for chunk in response
]
streamed_content = ""
for chunk in response:
streamed_content += chunk.event.delta.text.lower()
assert len(streamed_content) > 0
assert any(expected in streamed_content for expected in {"dog", "puppy", "pup"})