forked from phoenix-oss/llama-stack-mirror
Add Chroma and PGVector adapters (#56)
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
This commit is contained in:
parent
5de6ed946e
commit
3f090d1975
8 changed files with 628 additions and 119 deletions
|
@ -5,108 +5,45 @@
|
|||
# the root directory of this source tree.
|
||||
|
||||
import uuid
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import faiss
|
||||
import httpx
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_models.llama3.api.datatypes import * # noqa: F403
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_toolchain.memory.api import * # noqa: F403
|
||||
from llama_toolchain.memory.common.vector_store import (
|
||||
ALL_MINILM_L6_V2_DIMENSION,
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
)
|
||||
from .config import FaissImplConfig
|
||||
|
||||
|
||||
async def content_from_doc(doc: MemoryBankDocument) -> str:
|
||||
if isinstance(doc.content, URL):
|
||||
async with httpx.AsyncClient() as client:
|
||||
r = await client.get(doc.content.uri)
|
||||
return r.text
|
||||
class FaissIndex(EmbeddingIndex):
|
||||
id_by_index: Dict[int, str]
|
||||
chunk_by_index: Dict[int, str]
|
||||
|
||||
return interleaved_text_media_as_str(doc.content)
|
||||
def __init__(self, dimension: int):
|
||||
self.index = faiss.IndexFlatL2(dimension)
|
||||
self.id_by_index = {}
|
||||
self.chunk_by_index = {}
|
||||
|
||||
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
||||
indexlen = len(self.id_by_index)
|
||||
for i, chunk in enumerate(chunks):
|
||||
self.chunk_by_index[indexlen + i] = chunk
|
||||
print(f"Adding chunk #{indexlen + i} tokens={chunk.token_count}")
|
||||
self.id_by_index[indexlen + i] = chunk.document_id
|
||||
|
||||
def make_overlapped_chunks(
|
||||
text: str, window_len: int, overlap_len: int
|
||||
) -> List[Tuple[str, int]]:
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
tokens = tokenizer.encode(text, bos=False, eos=False)
|
||||
self.index.add(np.array(embeddings).astype(np.float32))
|
||||
|
||||
chunks = []
|
||||
for i in range(0, len(tokens), window_len - overlap_len):
|
||||
toks = tokens[i : i + window_len]
|
||||
chunk = tokenizer.decode(toks)
|
||||
chunks.append((chunk, len(toks)))
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
@dataclass
|
||||
class BankState:
|
||||
bank: MemoryBank
|
||||
index: Optional[faiss.IndexFlatL2] = None
|
||||
doc_by_id: Dict[str, MemoryBankDocument] = field(default_factory=dict)
|
||||
id_by_index: Dict[int, str] = field(default_factory=dict)
|
||||
chunk_by_index: Dict[int, str] = field(default_factory=dict)
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
model: "SentenceTransformer",
|
||||
documents: List[MemoryBankDocument],
|
||||
) -> None:
|
||||
tokenizer = Tokenizer.get_instance()
|
||||
chunk_size = self.bank.config.chunk_size_in_tokens
|
||||
|
||||
for doc in documents:
|
||||
indexlen = len(self.id_by_index)
|
||||
self.doc_by_id[doc.document_id] = doc
|
||||
|
||||
content = await content_from_doc(doc)
|
||||
chunks = make_overlapped_chunks(
|
||||
content,
|
||||
self.bank.config.chunk_size_in_tokens,
|
||||
self.bank.config.overlap_size_in_tokens
|
||||
or (self.bank.config.chunk_size_in_tokens // 4),
|
||||
)
|
||||
embeddings = model.encode([x[0] for x in chunks]).astype(np.float32)
|
||||
await self._ensure_index(embeddings.shape[1])
|
||||
|
||||
self.index.add(embeddings)
|
||||
for i, chunk in enumerate(chunks):
|
||||
self.chunk_by_index[indexlen + i] = Chunk(
|
||||
content=chunk[0],
|
||||
token_count=chunk[1],
|
||||
document_id=doc.document_id,
|
||||
)
|
||||
print(f"Adding chunk #{indexlen + i} tokens={chunk[1]}")
|
||||
self.id_by_index[indexlen + i] = doc.document_id
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
model: "SentenceTransformer",
|
||||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
if params is None:
|
||||
params = {}
|
||||
k = params.get("max_chunks", 3)
|
||||
|
||||
def _process(c) -> str:
|
||||
if isinstance(c, str):
|
||||
return c
|
||||
else:
|
||||
return "<media>"
|
||||
|
||||
if isinstance(query, list):
|
||||
query_str = " ".join([_process(c) for c in query])
|
||||
else:
|
||||
query_str = _process(query)
|
||||
|
||||
query_vector = model.encode([query_str])[0]
|
||||
async def query(self, embedding: NDArray, k: int) -> QueryDocumentsResponse:
|
||||
distances, indices = self.index.search(
|
||||
query_vector.reshape(1, -1).astype(np.float32), k
|
||||
embedding.reshape(1, -1).astype(np.float32), k
|
||||
)
|
||||
|
||||
chunks = []
|
||||
|
@ -119,17 +56,11 @@ class BankState:
|
|||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def _ensure_index(self, dimension: int) -> faiss.IndexFlatL2:
|
||||
if self.index is None:
|
||||
self.index = faiss.IndexFlatL2(dimension)
|
||||
return self.index
|
||||
|
||||
|
||||
class FaissMemoryImpl(Memory):
|
||||
def __init__(self, config: FaissImplConfig) -> None:
|
||||
self.config = config
|
||||
self.model = None
|
||||
self.states = {}
|
||||
self.cache = {}
|
||||
|
||||
async def initialize(self) -> None: ...
|
||||
|
||||
|
@ -153,14 +84,15 @@ class FaissMemoryImpl(Memory):
|
|||
config=config,
|
||||
url=url,
|
||||
)
|
||||
state = BankState(bank=bank)
|
||||
self.states[bank_id] = state
|
||||
index = BankWithIndex(bank=bank, index=FaissIndex(ALL_MINILM_L6_V2_DIMENSION))
|
||||
self.cache[bank_id] = index
|
||||
return bank
|
||||
|
||||
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
|
||||
if bank_id not in self.states:
|
||||
index = self.cache.get(bank_id)
|
||||
if index is None:
|
||||
return None
|
||||
return self.states[bank_id].bank
|
||||
return index.bank
|
||||
|
||||
async def insert_documents(
|
||||
self,
|
||||
|
@ -168,10 +100,11 @@ class FaissMemoryImpl(Memory):
|
|||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
assert bank_id in self.states, f"Bank {bank_id} not found"
|
||||
state = self.states[bank_id]
|
||||
index = self.cache.get(bank_id)
|
||||
if index is None:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
await state.insert_documents(self.get_model(), documents)
|
||||
await index.insert_documents(documents)
|
||||
|
||||
async def query_documents(
|
||||
self,
|
||||
|
@ -179,16 +112,8 @@ class FaissMemoryImpl(Memory):
|
|||
query: InterleavedTextMedia,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
assert bank_id in self.states, f"Bank {bank_id} not found"
|
||||
state = self.states[bank_id]
|
||||
index = self.cache.get(bank_id)
|
||||
if index is None:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
|
||||
return await state.query_documents(self.get_model(), query, params)
|
||||
|
||||
def get_model(self) -> "SentenceTransformer":
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
if self.model is None:
|
||||
print("Loading sentence transformer")
|
||||
self.model = SentenceTransformer("all-MiniLM-L6-v2")
|
||||
|
||||
return self.model
|
||||
return await index.query_documents(query, params)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue