refactor scoring/eval pytests (#607)

# What does this PR do?

- remove model registration & parameterize model in scoring/eval pytests

## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```

```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
```
<img width="860" alt="image"
src="https://github.com/user-attachments/assets/d4b0badc-da34-4097-9b7c-9511f8261723"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2024-12-11 10:47:37 -08:00 committed by GitHub
parent 47b2dc8ae3
commit 41487e6ed1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 54 additions and 43 deletions

View file

@ -38,7 +38,7 @@ class Testeval:
assert isinstance(response, list)
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack):
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
@ -46,11 +46,7 @@ class Testeval:
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
@ -77,12 +73,12 @@ class Testeval:
scoring_functions=scoring_functions,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
model=inference_model,
sampling_params=SamplingParams(),
),
scoring_params={
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-8B-Instruct",
judge_model=judge_model,
prompt_template=JUDGE_PROMPT,
judge_score_regexes=[
r"Total rating: (\d+)",
@ -97,18 +93,14 @@ class Testeval:
assert "basic::equality" in response.scores
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack):
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
@ -127,7 +119,7 @@ class Testeval:
task_id=task_id,
task_config=AppEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
model=inference_model,
sampling_params=SamplingParams(),
),
),
@ -142,18 +134,14 @@ class Testeval:
assert "basic::subset_of" in eval_response.scores
@pytest.mark.asyncio
async def test_eval_run_benchmark_eval(self, eval_stack):
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
response = await datasets_impl.list_datasets()
assert len(response) > 0
if response[0].provider_id != "huggingface":
@ -192,7 +180,7 @@ class Testeval:
task_id=benchmark_id,
task_config=BenchmarkEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
model=inference_model,
sampling_params=SamplingParams(),
),
num_examples=3,