forked from phoenix-oss/llama-stack-mirror
refactor scoring/eval pytests (#607)
# What does this PR do? - remove model registration & parameterize model in scoring/eval pytests ## Test Plan ``` pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py ``` ``` pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py ``` <img width="860" alt="image" src="https://github.com/user-attachments/assets/d4b0badc-da34-4097-9b7c-9511f8261723" /> ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
This commit is contained in:
parent
47b2dc8ae3
commit
41487e6ed1
6 changed files with 54 additions and 43 deletions
|
@ -38,7 +38,7 @@ class Testeval:
|
|||
assert isinstance(response, list)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_evaluate_rows(self, eval_stack):
|
||||
async def test_eval_evaluate_rows(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.eval_tasks],
|
||||
|
@ -46,11 +46,7 @@ class Testeval:
|
|||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
await register_dataset(
|
||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||
)
|
||||
|
@ -77,12 +73,12 @@ class Testeval:
|
|||
scoring_functions=scoring_functions,
|
||||
task_config=AppEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
scoring_params={
|
||||
"meta-reference::llm_as_judge_base": LLMAsJudgeScoringFnParams(
|
||||
judge_model="Llama3.1-8B-Instruct",
|
||||
judge_model=judge_model,
|
||||
prompt_template=JUDGE_PROMPT,
|
||||
judge_score_regexes=[
|
||||
r"Total rating: (\d+)",
|
||||
|
@ -97,18 +93,14 @@ class Testeval:
|
|||
assert "basic::equality" in response.scores
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_eval(self, eval_stack):
|
||||
async def test_eval_run_eval(self, eval_stack, inference_model, judge_model):
|
||||
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.eval_tasks],
|
||||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
await register_dataset(
|
||||
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
|
||||
)
|
||||
|
@ -127,7 +119,7 @@ class Testeval:
|
|||
task_id=task_id,
|
||||
task_config=AppEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
),
|
||||
|
@ -142,18 +134,14 @@ class Testeval:
|
|||
assert "basic::subset_of" in eval_response.scores
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_eval_run_benchmark_eval(self, eval_stack):
|
||||
async def test_eval_run_benchmark_eval(self, eval_stack, inference_model):
|
||||
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
|
||||
eval_stack[Api.eval],
|
||||
eval_stack[Api.eval_tasks],
|
||||
eval_stack[Api.datasets],
|
||||
eval_stack[Api.models],
|
||||
)
|
||||
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
|
||||
await models_impl.register_model(
|
||||
model_id=model_id,
|
||||
provider_id="",
|
||||
)
|
||||
|
||||
response = await datasets_impl.list_datasets()
|
||||
assert len(response) > 0
|
||||
if response[0].provider_id != "huggingface":
|
||||
|
@ -192,7 +180,7 @@ class Testeval:
|
|||
task_id=benchmark_id,
|
||||
task_config=BenchmarkEvalTaskConfig(
|
||||
eval_candidate=ModelCandidate(
|
||||
model="Llama3.2-3B-Instruct",
|
||||
model=inference_model,
|
||||
sampling_params=SamplingParams(),
|
||||
),
|
||||
num_examples=3,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue