forked from phoenix-oss/llama-stack-mirror
chore: remove recordable mock (#2088)
# What does this PR do? We've disabled it for a while given that this hasn't worked as well as expected given the frequent changes of llama_stack_client and how this requires both repos to be in sync. ## Test Plan Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
This commit is contained in:
parent
a5d151e912
commit
4597145011
5 changed files with 36 additions and 57965 deletions
|
@ -56,8 +56,8 @@ def get_boiling_point_with_metadata(liquid_name: str, celcius: bool = True) -> d
|
|||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def agent_config(llama_stack_client_with_mocked_inference, text_model_id):
|
||||
available_shields = [shield.identifier for shield in llama_stack_client_with_mocked_inference.shields.list()]
|
||||
def agent_config(llama_stack_client, text_model_id):
|
||||
available_shields = [shield.identifier for shield in llama_stack_client.shields.list()]
|
||||
available_shields = available_shields[:1]
|
||||
agent_config = dict(
|
||||
model=text_model_id,
|
||||
|
@ -77,8 +77,8 @@ def agent_config(llama_stack_client_with_mocked_inference, text_model_id):
|
|||
return agent_config
|
||||
|
||||
|
||||
def test_agent_simple(llama_stack_client_with_mocked_inference, agent_config):
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
def test_agent_simple(llama_stack_client, agent_config):
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
simple_hello = agent.create_turn(
|
||||
|
@ -179,7 +179,7 @@ def test_agent_name(llama_stack_client, text_model_id):
|
|||
assert "hello" in agent_logs[0]["output"].lower()
|
||||
|
||||
|
||||
def test_tool_config(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_tool_config(agent_config):
|
||||
common_params = dict(
|
||||
model="meta-llama/Llama-3.2-3B-Instruct",
|
||||
instructions="You are a helpful assistant",
|
||||
|
@ -235,7 +235,7 @@ def test_tool_config(llama_stack_client_with_mocked_inference, agent_config):
|
|||
Server__AgentConfig(**agent_config)
|
||||
|
||||
|
||||
def test_builtin_tool_web_search(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_builtin_tool_web_search(llama_stack_client, agent_config):
|
||||
agent_config = {
|
||||
**agent_config,
|
||||
"instructions": "You are a helpful assistant that can use web search to answer questions.",
|
||||
|
@ -243,7 +243,7 @@ def test_builtin_tool_web_search(llama_stack_client_with_mocked_inference, agent
|
|||
"builtin::websearch",
|
||||
],
|
||||
}
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
response = agent.create_turn(
|
||||
|
@ -266,14 +266,14 @@ def test_builtin_tool_web_search(llama_stack_client_with_mocked_inference, agent
|
|||
assert found_tool_execution
|
||||
|
||||
|
||||
def test_builtin_tool_code_execution(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_builtin_tool_code_execution(llama_stack_client, agent_config):
|
||||
agent_config = {
|
||||
**agent_config,
|
||||
"tools": [
|
||||
"builtin::code_interpreter",
|
||||
],
|
||||
}
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
response = agent.create_turn(
|
||||
|
@ -296,7 +296,7 @@ def test_builtin_tool_code_execution(llama_stack_client_with_mocked_inference, a
|
|||
# server, this means the _server_ must have `bwrap` available. If you are using library client, then
|
||||
# you must have `bwrap` available in test's environment.
|
||||
@pytest.mark.skip(reason="Code interpreter is currently disabled in the Stack")
|
||||
def test_code_interpreter_for_attachments(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_code_interpreter_for_attachments(llama_stack_client, agent_config):
|
||||
agent_config = {
|
||||
**agent_config,
|
||||
"tools": [
|
||||
|
@ -304,7 +304,7 @@ def test_code_interpreter_for_attachments(llama_stack_client_with_mocked_inferen
|
|||
],
|
||||
}
|
||||
|
||||
codex_agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
codex_agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = codex_agent.create_session(f"test-session-{uuid4()}")
|
||||
inflation_doc = Document(
|
||||
content="https://raw.githubusercontent.com/meta-llama/llama-stack-apps/main/examples/resources/inflation.csv",
|
||||
|
@ -332,14 +332,14 @@ def test_code_interpreter_for_attachments(llama_stack_client_with_mocked_inferen
|
|||
assert "Tool:code_interpreter" in logs_str
|
||||
|
||||
|
||||
def test_custom_tool(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_custom_tool(llama_stack_client, agent_config):
|
||||
client_tool = get_boiling_point
|
||||
agent_config = {
|
||||
**agent_config,
|
||||
"tools": [client_tool],
|
||||
}
|
||||
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
response = agent.create_turn(
|
||||
|
@ -358,7 +358,7 @@ def test_custom_tool(llama_stack_client_with_mocked_inference, agent_config):
|
|||
assert "get_boiling_point" in logs_str
|
||||
|
||||
|
||||
def test_custom_tool_infinite_loop(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_custom_tool_infinite_loop(llama_stack_client, agent_config):
|
||||
client_tool = get_boiling_point
|
||||
agent_config = {
|
||||
**agent_config,
|
||||
|
@ -367,7 +367,7 @@ def test_custom_tool_infinite_loop(llama_stack_client_with_mocked_inference, age
|
|||
"max_infer_iters": 5,
|
||||
}
|
||||
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
response = agent.create_turn(
|
||||
|
@ -385,25 +385,21 @@ def test_custom_tool_infinite_loop(llama_stack_client_with_mocked_inference, age
|
|||
assert num_tool_calls <= 5
|
||||
|
||||
|
||||
def test_tool_choice_required(llama_stack_client_with_mocked_inference, agent_config):
|
||||
tool_execution_steps = run_agent_with_tool_choice(
|
||||
llama_stack_client_with_mocked_inference, agent_config, "required"
|
||||
)
|
||||
def test_tool_choice_required(llama_stack_client, agent_config):
|
||||
tool_execution_steps = run_agent_with_tool_choice(llama_stack_client, agent_config, "required")
|
||||
assert len(tool_execution_steps) > 0
|
||||
|
||||
|
||||
def test_tool_choice_none(llama_stack_client_with_mocked_inference, agent_config):
|
||||
tool_execution_steps = run_agent_with_tool_choice(llama_stack_client_with_mocked_inference, agent_config, "none")
|
||||
def test_tool_choice_none(llama_stack_client, agent_config):
|
||||
tool_execution_steps = run_agent_with_tool_choice(llama_stack_client, agent_config, "none")
|
||||
assert len(tool_execution_steps) == 0
|
||||
|
||||
|
||||
def test_tool_choice_get_boiling_point(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_tool_choice_get_boiling_point(llama_stack_client, agent_config):
|
||||
if "llama" not in agent_config["model"].lower():
|
||||
pytest.xfail("NotImplemented for non-llama models")
|
||||
|
||||
tool_execution_steps = run_agent_with_tool_choice(
|
||||
llama_stack_client_with_mocked_inference, agent_config, "get_boiling_point"
|
||||
)
|
||||
tool_execution_steps = run_agent_with_tool_choice(llama_stack_client, agent_config, "get_boiling_point")
|
||||
assert len(tool_execution_steps) >= 1 and tool_execution_steps[0].tool_calls[0].tool_name == "get_boiling_point"
|
||||
|
||||
|
||||
|
@ -435,7 +431,7 @@ def run_agent_with_tool_choice(client, agent_config, tool_choice):
|
|||
|
||||
|
||||
@pytest.mark.parametrize("rag_tool_name", ["builtin::rag/knowledge_search", "builtin::rag"])
|
||||
def test_rag_agent(llama_stack_client_with_mocked_inference, agent_config, rag_tool_name):
|
||||
def test_rag_agent(llama_stack_client, agent_config, rag_tool_name):
|
||||
urls = ["chat.rst", "llama3.rst", "memory_optimizations.rst", "lora_finetune.rst"]
|
||||
documents = [
|
||||
Document(
|
||||
|
@ -447,12 +443,12 @@ def test_rag_agent(llama_stack_client_with_mocked_inference, agent_config, rag_t
|
|||
for i, url in enumerate(urls)
|
||||
]
|
||||
vector_db_id = f"test-vector-db-{uuid4()}"
|
||||
llama_stack_client_with_mocked_inference.vector_dbs.register(
|
||||
llama_stack_client.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
)
|
||||
llama_stack_client_with_mocked_inference.tool_runtime.rag_tool.insert(
|
||||
llama_stack_client.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=vector_db_id,
|
||||
# small chunks help to get specific info out of the docs
|
||||
|
@ -469,7 +465,7 @@ def test_rag_agent(llama_stack_client_with_mocked_inference, agent_config, rag_t
|
|||
)
|
||||
],
|
||||
}
|
||||
rag_agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
rag_agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = rag_agent.create_session(f"test-session-{uuid4()}")
|
||||
user_prompts = [
|
||||
(
|
||||
|
@ -494,7 +490,7 @@ def test_rag_agent(llama_stack_client_with_mocked_inference, agent_config, rag_t
|
|||
assert expected_kw in response.output_message.content.lower()
|
||||
|
||||
|
||||
def test_rag_agent_with_attachments(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_rag_agent_with_attachments(llama_stack_client, agent_config):
|
||||
urls = ["llama3.rst", "lora_finetune.rst"]
|
||||
documents = [
|
||||
# passign as url
|
||||
|
@ -517,7 +513,7 @@ def test_rag_agent_with_attachments(llama_stack_client_with_mocked_inference, ag
|
|||
metadata={},
|
||||
),
|
||||
]
|
||||
rag_agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
rag_agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = rag_agent.create_session(f"test-session-{uuid4()}")
|
||||
user_prompts = [
|
||||
(
|
||||
|
@ -553,7 +549,7 @@ def test_rag_agent_with_attachments(llama_stack_client_with_mocked_inference, ag
|
|||
|
||||
|
||||
@pytest.mark.skip(reason="Code interpreter is currently disabled in the Stack")
|
||||
def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_rag_and_code_agent(llama_stack_client, agent_config):
|
||||
if "llama-4" in agent_config["model"].lower():
|
||||
pytest.xfail("Not working for llama4")
|
||||
|
||||
|
@ -578,12 +574,12 @@ def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_conf
|
|||
)
|
||||
)
|
||||
vector_db_id = f"test-vector-db-{uuid4()}"
|
||||
llama_stack_client_with_mocked_inference.vector_dbs.register(
|
||||
llama_stack_client.vector_dbs.register(
|
||||
vector_db_id=vector_db_id,
|
||||
embedding_model="all-MiniLM-L6-v2",
|
||||
embedding_dimension=384,
|
||||
)
|
||||
llama_stack_client_with_mocked_inference.tool_runtime.rag_tool.insert(
|
||||
llama_stack_client.tool_runtime.rag_tool.insert(
|
||||
documents=documents,
|
||||
vector_db_id=vector_db_id,
|
||||
chunk_size_in_tokens=128,
|
||||
|
@ -598,7 +594,7 @@ def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_conf
|
|||
"builtin::code_interpreter",
|
||||
],
|
||||
}
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
user_prompts = [
|
||||
(
|
||||
"when was Perplexity the company founded?",
|
||||
|
@ -632,7 +628,7 @@ def test_rag_and_code_agent(llama_stack_client_with_mocked_inference, agent_conf
|
|||
"client_tools",
|
||||
[(get_boiling_point, False), (get_boiling_point_with_metadata, True)],
|
||||
)
|
||||
def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_config, client_tools):
|
||||
def test_create_turn_response(llama_stack_client, agent_config, client_tools):
|
||||
client_tool, expects_metadata = client_tools
|
||||
agent_config = {
|
||||
**agent_config,
|
||||
|
@ -641,7 +637,7 @@ def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_co
|
|||
"tools": [client_tool],
|
||||
}
|
||||
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
input_prompt = f"Call {client_tools[0].__name__} tool and answer What is the boiling point of polyjuice?"
|
||||
|
@ -677,7 +673,7 @@ def test_create_turn_response(llama_stack_client_with_mocked_inference, agent_co
|
|||
last_step_completed_at = step.completed_at
|
||||
|
||||
|
||||
def test_multi_tool_calls(llama_stack_client_with_mocked_inference, agent_config):
|
||||
def test_multi_tool_calls(llama_stack_client, agent_config):
|
||||
if "gpt" not in agent_config["model"]:
|
||||
pytest.xfail("Only tested on GPT models")
|
||||
|
||||
|
@ -686,7 +682,7 @@ def test_multi_tool_calls(llama_stack_client_with_mocked_inference, agent_config
|
|||
"tools": [get_boiling_point],
|
||||
}
|
||||
|
||||
agent = Agent(llama_stack_client_with_mocked_inference, **agent_config)
|
||||
agent = Agent(llama_stack_client, **agent_config)
|
||||
session_id = agent.create_session(f"test-session-{uuid4()}")
|
||||
|
||||
response = agent.create_turn(
|
||||
|
|
|
@ -4,12 +4,9 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import copy
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import yaml
|
||||
|
@ -17,12 +14,9 @@ from llama_stack_client import LlamaStackClient
|
|||
from openai import OpenAI
|
||||
|
||||
from llama_stack import LlamaStackAsLibraryClient
|
||||
from llama_stack.apis.datatypes import Api
|
||||
from llama_stack.distribution.stack import run_config_from_adhoc_config_spec
|
||||
from llama_stack.env import get_env_or_fail
|
||||
|
||||
from .recordable_mock import RecordableMock
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def provider_data():
|
||||
|
@ -46,63 +40,6 @@ def provider_data():
|
|||
return provider_data
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def llama_stack_client_with_mocked_inference(llama_stack_client, request):
|
||||
"""
|
||||
Returns a client with mocked inference APIs and tool runtime APIs that use recorded responses by default.
|
||||
|
||||
If --record-responses is passed, it will call the real APIs and record the responses.
|
||||
"""
|
||||
# TODO: will rework this to be more stable
|
||||
return llama_stack_client
|
||||
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
||||
logging.warning(
|
||||
"llama_stack_client_with_mocked_inference is not supported for this client, returning original client without mocking"
|
||||
)
|
||||
return llama_stack_client
|
||||
|
||||
record_responses = request.config.getoption("--record-responses")
|
||||
cache_dir = Path(__file__).parent / "recorded_responses"
|
||||
|
||||
# Create a shallow copy of the client to avoid modifying the original
|
||||
client = copy.copy(llama_stack_client)
|
||||
|
||||
# Get the inference API used by the agents implementation
|
||||
agents_impl = client.async_client.impls[Api.agents]
|
||||
original_inference = agents_impl.inference_api
|
||||
|
||||
# Create a new inference object with the same attributes
|
||||
inference_mock = copy.copy(original_inference)
|
||||
|
||||
# Replace the methods with recordable mocks
|
||||
inference_mock.chat_completion = RecordableMock(
|
||||
original_inference.chat_completion, cache_dir, "chat_completion", record=record_responses
|
||||
)
|
||||
inference_mock.completion = RecordableMock(
|
||||
original_inference.completion, cache_dir, "text_completion", record=record_responses
|
||||
)
|
||||
inference_mock.embeddings = RecordableMock(
|
||||
original_inference.embeddings, cache_dir, "embeddings", record=record_responses
|
||||
)
|
||||
|
||||
# Replace the inference API in the agents implementation
|
||||
agents_impl.inference_api = inference_mock
|
||||
|
||||
original_tool_runtime_api = agents_impl.tool_runtime_api
|
||||
tool_runtime_mock = copy.copy(original_tool_runtime_api)
|
||||
|
||||
# Replace the methods with recordable mocks
|
||||
tool_runtime_mock.invoke_tool = RecordableMock(
|
||||
original_tool_runtime_api.invoke_tool, cache_dir, "invoke_tool", record=record_responses
|
||||
)
|
||||
agents_impl.tool_runtime_api = tool_runtime_mock
|
||||
|
||||
# Also update the client.inference for consistency
|
||||
client.inference = inference_mock
|
||||
|
||||
return client
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_provider_type(llama_stack_client):
|
||||
providers = llama_stack_client.providers.list()
|
||||
|
@ -177,7 +114,7 @@ def skip_if_no_model(request):
|
|||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def llama_stack_client(request, provider_data, text_model_id):
|
||||
def llama_stack_client(request, provider_data):
|
||||
config = request.config.getoption("--stack-config")
|
||||
if not config:
|
||||
config = get_env_or_fail("LLAMA_STACK_CONFIG")
|
||||
|
|
|
@ -1,221 +0,0 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
import importlib
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class RecordableMock:
|
||||
"""A mock that can record and replay API responses."""
|
||||
|
||||
def __init__(self, real_func, cache_dir, func_name, record=False):
|
||||
self.real_func = real_func
|
||||
self.json_path = Path(cache_dir) / f"{func_name}.json"
|
||||
self.record = record
|
||||
self.cache = {}
|
||||
|
||||
# Load existing cache if available and not recording
|
||||
if self.json_path.exists():
|
||||
try:
|
||||
with open(self.json_path) as f:
|
||||
self.cache = json.load(f)
|
||||
except Exception as e:
|
||||
print(f"Error loading cache from {self.json_path}: {e}")
|
||||
raise
|
||||
|
||||
async def __call__(self, *args, **kwargs):
|
||||
"""
|
||||
Returns a coroutine that when awaited returns the result or an async generator,
|
||||
matching the behavior of the original function.
|
||||
"""
|
||||
# Create a cache key from the arguments
|
||||
key = self._create_cache_key(args, kwargs)
|
||||
|
||||
if self.record:
|
||||
# In record mode, always call the real function
|
||||
real_result = self.real_func(*args, **kwargs)
|
||||
|
||||
# If it's a coroutine, we need to create a wrapper coroutine
|
||||
if hasattr(real_result, "__await__"):
|
||||
# Define a coroutine function that will record the result
|
||||
async def record_coroutine():
|
||||
try:
|
||||
# Await the real coroutine
|
||||
result = await real_result
|
||||
|
||||
# Check if the result is an async generator
|
||||
if hasattr(result, "__aiter__"):
|
||||
# It's an async generator, so we need to record its chunks
|
||||
chunks = []
|
||||
|
||||
# Create and return a new async generator that records chunks
|
||||
async def recording_generator():
|
||||
nonlocal chunks
|
||||
async for chunk in result:
|
||||
chunks.append(chunk)
|
||||
yield chunk
|
||||
# After all chunks are yielded, save to cache
|
||||
self.cache[key] = {"type": "generator", "chunks": chunks}
|
||||
self._save_cache()
|
||||
|
||||
return recording_generator()
|
||||
else:
|
||||
# It's a regular result, save it to cache
|
||||
self.cache[key] = {"type": "value", "value": result}
|
||||
self._save_cache()
|
||||
return result
|
||||
except Exception as e:
|
||||
print(f"Error in recording mode: {e}")
|
||||
raise
|
||||
|
||||
return await record_coroutine()
|
||||
else:
|
||||
# It's already an async generator, so we need to record its chunks
|
||||
async def record_generator():
|
||||
chunks = []
|
||||
async for chunk in real_result:
|
||||
chunks.append(chunk)
|
||||
yield chunk
|
||||
# After all chunks are yielded, save to cache
|
||||
self.cache[key] = {"type": "generator", "chunks": chunks}
|
||||
self._save_cache()
|
||||
|
||||
return record_generator()
|
||||
elif key not in self.cache:
|
||||
# In replay mode, if the key is not in the cache, throw an error
|
||||
raise KeyError(
|
||||
f"No cached response found for key: {key}\nRun with --record-responses to record this response."
|
||||
)
|
||||
else:
|
||||
# In replay mode with a cached response
|
||||
cached_data = self.cache[key]
|
||||
|
||||
# Check if it's a value or chunks
|
||||
if cached_data.get("type") == "value":
|
||||
# It's a regular value
|
||||
return self._reconstruct_object(cached_data["value"])
|
||||
else:
|
||||
# It's chunks from an async generator
|
||||
async def replay_generator():
|
||||
for chunk in cached_data["chunks"]:
|
||||
yield self._reconstruct_object(chunk)
|
||||
|
||||
return replay_generator()
|
||||
|
||||
def _create_cache_key(self, args, kwargs):
|
||||
"""Create a hashable key from the function arguments, ignoring auto-generated IDs."""
|
||||
# Convert to JSON strings with sorted keys
|
||||
key = json.dumps((args, kwargs), sort_keys=True, default=self._json_default)
|
||||
|
||||
# Post-process the key with regex to replace IDs with placeholders
|
||||
# Replace UUIDs and similar patterns
|
||||
key = re.sub(r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}", "<UUID>", key)
|
||||
|
||||
# Replace temporary file paths created by tempfile.mkdtemp()
|
||||
key = re.sub(r"/var/folders/[^,'\"\s]+", "<TEMP_FILE>", key)
|
||||
|
||||
# Replace /tmp/ paths which are also commonly used for temporary files
|
||||
key = re.sub(r"/tmp/[^,'\"\s]+", "<TEMP_FILE>", key)
|
||||
|
||||
return key
|
||||
|
||||
def _save_cache(self):
|
||||
"""Save the cache to disk in JSON format."""
|
||||
os.makedirs(self.json_path.parent, exist_ok=True)
|
||||
|
||||
# Write the JSON file with pretty formatting
|
||||
try:
|
||||
with open(self.json_path, "w") as f:
|
||||
json.dump(self.cache, f, indent=2, sort_keys=True, default=self._json_default)
|
||||
# write another empty line at the end of the file to make pre-commit happy
|
||||
f.write("\n")
|
||||
except Exception as e:
|
||||
print(f"Error saving JSON cache: {e}")
|
||||
|
||||
def _json_default(self, obj):
|
||||
"""Default function for JSON serialization of objects."""
|
||||
|
||||
if isinstance(obj, datetime):
|
||||
return {
|
||||
"__datetime__": obj.isoformat(),
|
||||
"__module__": obj.__class__.__module__,
|
||||
"__class__": obj.__class__.__name__,
|
||||
}
|
||||
|
||||
if isinstance(obj, Enum):
|
||||
return {
|
||||
"__enum__": obj.__class__.__name__,
|
||||
"value": obj.value,
|
||||
"__module__": obj.__class__.__module__,
|
||||
}
|
||||
|
||||
# Handle Pydantic models
|
||||
if hasattr(obj, "model_dump"):
|
||||
model_data = obj.model_dump()
|
||||
return {
|
||||
"__pydantic__": obj.__class__.__name__,
|
||||
"__module__": obj.__class__.__module__,
|
||||
"data": model_data,
|
||||
}
|
||||
|
||||
def _reconstruct_object(self, data):
|
||||
"""Reconstruct an object from its JSON representation."""
|
||||
if isinstance(data, dict):
|
||||
# Check if this is a serialized datetime
|
||||
if "__datetime__" in data:
|
||||
try:
|
||||
module_name = data.get("__module__", "datetime")
|
||||
class_name = data.get("__class__", "datetime")
|
||||
|
||||
# Try to import the specific datetime class
|
||||
module = importlib.import_module(module_name)
|
||||
dt_class = getattr(module, class_name)
|
||||
|
||||
# Parse the ISO format string
|
||||
dt = dt_class.fromisoformat(data["__datetime__"])
|
||||
return dt
|
||||
except (ImportError, AttributeError, ValueError) as e:
|
||||
print(f"Error reconstructing datetime: {e}")
|
||||
return data
|
||||
|
||||
# Check if this is a serialized enum
|
||||
elif "__enum__" in data:
|
||||
try:
|
||||
module_name = data.get("__module__", "builtins")
|
||||
enum_class = self._import_class(module_name, data["__enum__"])
|
||||
return enum_class(data["value"])
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Error reconstructing enum: {e}")
|
||||
return data
|
||||
|
||||
# Check if this is a serialized Pydantic model
|
||||
elif "__pydantic__" in data:
|
||||
try:
|
||||
module_name = data.get("__module__", "builtins")
|
||||
model_class = self._import_class(module_name, data["__pydantic__"])
|
||||
return model_class(**self._reconstruct_object(data["data"]))
|
||||
except (ImportError, AttributeError) as e:
|
||||
print(f"Error reconstructing Pydantic model: {e}")
|
||||
return data
|
||||
|
||||
# Regular dictionary
|
||||
return {k: self._reconstruct_object(v) for k, v in data.items()}
|
||||
|
||||
# Handle lists
|
||||
elif isinstance(data, list):
|
||||
return [self._reconstruct_object(item) for item in data]
|
||||
|
||||
# Return primitive types as is
|
||||
return data
|
||||
|
||||
def _import_class(self, module_name, class_name):
|
||||
"""Import a class from a module."""
|
||||
module = __import__(module_name, fromlist=[class_name])
|
||||
return getattr(module, class_name)
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
Loading…
Add table
Add a link
Reference in a new issue