forked from phoenix-oss/llama-stack-mirror
add NVIDIA NIM inference adapter (#355)
# What does this PR do? this PR adds a basic inference adapter to NVIDIA NIMs what it does - - chat completion api - tool calls - streaming - structured output - logprobs - support hosted NIM on integrate.api.nvidia.com - support downloaded NIM containers what it does not do - - completion api - embedding api - vision models - builtin tools - have certainty that sampling strategies are correct ## Feature/Issue validation/testing/test plan `pytest -s -v --providers inference=nvidia llama_stack/providers/tests/inference/ --env NVIDIA_API_KEY=...` all tests should pass. there are pydantic v1 warnings. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [x] Did you read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Was this discussed/approved via a Github issue? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? - [x] Did you write any new necessary tests? Thanks for contributing 🎉!
This commit is contained in:
parent
2cfc41e13b
commit
4e6c984c26
10 changed files with 934 additions and 10 deletions
|
@ -150,4 +150,15 @@ def available_providers() -> List[ProviderSpec]:
|
|||
config_class="llama_stack.providers.remote.inference.databricks.DatabricksImplConfig",
|
||||
),
|
||||
),
|
||||
remote_provider_spec(
|
||||
api=Api.inference,
|
||||
adapter=AdapterSpec(
|
||||
adapter_type="nvidia",
|
||||
pip_packages=[
|
||||
"openai",
|
||||
],
|
||||
module="llama_stack.providers.remote.inference.nvidia",
|
||||
config_class="llama_stack.providers.remote.inference.nvidia.NVIDIAConfig",
|
||||
),
|
||||
),
|
||||
]
|
||||
|
|
22
llama_stack/providers/remote/inference/nvidia/__init__.py
Normal file
22
llama_stack/providers/remote/inference/nvidia/__init__.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.inference import Inference
|
||||
|
||||
from .config import NVIDIAConfig
|
||||
|
||||
|
||||
async def get_adapter_impl(config: NVIDIAConfig, _deps) -> Inference:
|
||||
# import dynamically so `llama stack build` does not fail due to missing dependencies
|
||||
from .nvidia import NVIDIAInferenceAdapter
|
||||
|
||||
if not isinstance(config, NVIDIAConfig):
|
||||
raise RuntimeError(f"Unexpected config type: {type(config)}")
|
||||
adapter = NVIDIAInferenceAdapter(config)
|
||||
return adapter
|
||||
|
||||
|
||||
__all__ = ["get_adapter_impl", "NVIDIAConfig"]
|
48
llama_stack/providers/remote/inference/nvidia/config.py
Normal file
48
llama_stack/providers/remote/inference/nvidia/config.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import os
|
||||
from typing import Optional
|
||||
|
||||
from llama_models.schema_utils import json_schema_type
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class NVIDIAConfig(BaseModel):
|
||||
"""
|
||||
Configuration for the NVIDIA NIM inference endpoint.
|
||||
|
||||
Attributes:
|
||||
url (str): A base url for accessing the NVIDIA NIM, e.g. http://localhost:8000
|
||||
api_key (str): The access key for the hosted NIM endpoints
|
||||
|
||||
There are two ways to access NVIDIA NIMs -
|
||||
0. Hosted: Preview APIs hosted at https://integrate.api.nvidia.com
|
||||
1. Self-hosted: You can run NVIDIA NIMs on your own infrastructure
|
||||
|
||||
By default the configuration is set to use the hosted APIs. This requires
|
||||
an API key which can be obtained from https://ngc.nvidia.com/.
|
||||
|
||||
By default the configuration will attempt to read the NVIDIA_API_KEY environment
|
||||
variable to set the api_key. Please do not put your API key in code.
|
||||
|
||||
If you are using a self-hosted NVIDIA NIM, you can set the url to the
|
||||
URL of your running NVIDIA NIM and do not need to set the api_key.
|
||||
"""
|
||||
|
||||
url: str = Field(
|
||||
default="https://integrate.api.nvidia.com",
|
||||
description="A base url for accessing the NVIDIA NIM",
|
||||
)
|
||||
api_key: Optional[str] = Field(
|
||||
default_factory=lambda: os.getenv("NVIDIA_API_KEY"),
|
||||
description="The NVIDIA API key, only needed of using the hosted service",
|
||||
)
|
||||
timeout: int = Field(
|
||||
default=60,
|
||||
description="Timeout for the HTTP requests",
|
||||
)
|
183
llama_stack/providers/remote/inference/nvidia/nvidia.py
Normal file
183
llama_stack/providers/remote/inference/nvidia/nvidia.py
Normal file
|
@ -0,0 +1,183 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import warnings
|
||||
from typing import AsyncIterator, List, Optional, Union
|
||||
|
||||
from llama_models.datatypes import SamplingParams
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
InterleavedTextMedia,
|
||||
Message,
|
||||
ToolChoice,
|
||||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
from llama_models.sku_list import CoreModelId
|
||||
from openai import APIConnectionError, AsyncOpenAI
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
CompletionResponse,
|
||||
CompletionResponseStreamChunk,
|
||||
EmbeddingsResponse,
|
||||
Inference,
|
||||
LogProbConfig,
|
||||
ResponseFormat,
|
||||
)
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
||||
from . import NVIDIAConfig
|
||||
from .openai_utils import (
|
||||
convert_chat_completion_request,
|
||||
convert_openai_chat_completion_choice,
|
||||
convert_openai_chat_completion_stream,
|
||||
)
|
||||
from .utils import _is_nvidia_hosted, check_health
|
||||
|
||||
_MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"meta/llama3-8b-instruct",
|
||||
CoreModelId.llama3_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama3-70b-instruct",
|
||||
CoreModelId.llama3_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.1-8b-instruct",
|
||||
CoreModelId.llama3_1_8b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.1-70b-instruct",
|
||||
CoreModelId.llama3_1_70b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.1-405b-instruct",
|
||||
CoreModelId.llama3_1_405b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-1b-instruct",
|
||||
CoreModelId.llama3_2_1b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-3b-instruct",
|
||||
CoreModelId.llama3_2_3b_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-11b-vision-instruct",
|
||||
CoreModelId.llama3_2_11b_vision_instruct.value,
|
||||
),
|
||||
build_model_alias(
|
||||
"meta/llama-3.2-90b-vision-instruct",
|
||||
CoreModelId.llama3_2_90b_vision_instruct.value,
|
||||
),
|
||||
# TODO(mf): how do we handle Nemotron models?
|
||||
# "Llama3.1-Nemotron-51B-Instruct" -> "meta/llama-3.1-nemotron-51b-instruct",
|
||||
]
|
||||
|
||||
|
||||
class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
||||
def __init__(self, config: NVIDIAConfig) -> None:
|
||||
# TODO(mf): filter by available models
|
||||
ModelRegistryHelper.__init__(self, model_aliases=_MODEL_ALIASES)
|
||||
|
||||
print(f"Initializing NVIDIAInferenceAdapter({config.url})...")
|
||||
|
||||
if _is_nvidia_hosted(config):
|
||||
if not config.api_key:
|
||||
raise RuntimeError(
|
||||
"API key is required for hosted NVIDIA NIM. "
|
||||
"Either provide an API key or use a self-hosted NIM."
|
||||
)
|
||||
# elif self._config.api_key:
|
||||
#
|
||||
# we don't raise this warning because a user may have deployed their
|
||||
# self-hosted NIM with an API key requirement.
|
||||
#
|
||||
# warnings.warn(
|
||||
# "API key is not required for self-hosted NVIDIA NIM. "
|
||||
# "Consider removing the api_key from the configuration."
|
||||
# )
|
||||
|
||||
self._config = config
|
||||
# make sure the client lives longer than any async calls
|
||||
self._client = AsyncOpenAI(
|
||||
base_url=f"{self._config.url}/v1",
|
||||
api_key=self._config.api_key or "NO KEY",
|
||||
timeout=self._config.timeout,
|
||||
)
|
||||
|
||||
def completion(
|
||||
self,
|
||||
model_id: str,
|
||||
content: InterleavedTextMedia,
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]]:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def embeddings(
|
||||
self,
|
||||
model_id: str,
|
||||
contents: List[InterleavedTextMedia],
|
||||
) -> EmbeddingsResponse:
|
||||
raise NotImplementedError()
|
||||
|
||||
async def chat_completion(
|
||||
self,
|
||||
model_id: str,
|
||||
messages: List[Message],
|
||||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[
|
||||
ToolPromptFormat
|
||||
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]
|
||||
]:
|
||||
if tool_prompt_format:
|
||||
warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring")
|
||||
|
||||
await check_health(self._config) # this raises errors
|
||||
|
||||
request = convert_chat_completion_request(
|
||||
request=ChatCompletionRequest(
|
||||
model=self.get_provider_model_id(model_id),
|
||||
messages=messages,
|
||||
sampling_params=sampling_params,
|
||||
response_format=response_format,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
tool_prompt_format=tool_prompt_format,
|
||||
stream=stream,
|
||||
logprobs=logprobs,
|
||||
),
|
||||
n=1,
|
||||
)
|
||||
|
||||
try:
|
||||
response = await self._client.chat.completions.create(**request)
|
||||
except APIConnectionError as e:
|
||||
raise ConnectionError(
|
||||
f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}"
|
||||
) from e
|
||||
|
||||
if stream:
|
||||
return convert_openai_chat_completion_stream(response)
|
||||
else:
|
||||
# we pass n=1 to get only one completion
|
||||
return convert_openai_chat_completion_choice(response.choices[0])
|
581
llama_stack/providers/remote/inference/nvidia/openai_utils.py
Normal file
581
llama_stack/providers/remote/inference/nvidia/openai_utils.py
Normal file
|
@ -0,0 +1,581 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import warnings
|
||||
from typing import Any, AsyncGenerator, Dict, Generator, List, Optional
|
||||
|
||||
from llama_models.llama3.api.datatypes import (
|
||||
BuiltinTool,
|
||||
CompletionMessage,
|
||||
StopReason,
|
||||
TokenLogProbs,
|
||||
ToolCall,
|
||||
ToolDefinition,
|
||||
)
|
||||
from openai import AsyncStream
|
||||
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam as OpenAIChatCompletionAssistantMessage,
|
||||
ChatCompletionChunk as OpenAIChatCompletionChunk,
|
||||
ChatCompletionMessageParam as OpenAIChatCompletionMessage,
|
||||
ChatCompletionMessageToolCallParam as OpenAIChatCompletionMessageToolCall,
|
||||
ChatCompletionSystemMessageParam as OpenAIChatCompletionSystemMessage,
|
||||
ChatCompletionToolMessageParam as OpenAIChatCompletionToolMessage,
|
||||
ChatCompletionUserMessageParam as OpenAIChatCompletionUserMessage,
|
||||
)
|
||||
from openai.types.chat.chat_completion import (
|
||||
Choice as OpenAIChoice,
|
||||
ChoiceLogprobs as OpenAIChoiceLogprobs, # same as chat_completion_chunk ChoiceLogprobs
|
||||
)
|
||||
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
Function as OpenAIFunction,
|
||||
)
|
||||
|
||||
from llama_stack.apis.inference import (
|
||||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
ChatCompletionResponseEvent,
|
||||
ChatCompletionResponseEventType,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
JsonSchemaResponseFormat,
|
||||
Message,
|
||||
SystemMessage,
|
||||
ToolCallDelta,
|
||||
ToolCallParseStatus,
|
||||
ToolResponseMessage,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
|
||||
def _convert_tooldef_to_openai_tool(tool: ToolDefinition) -> dict:
|
||||
"""
|
||||
Convert a ToolDefinition to an OpenAI API-compatible dictionary.
|
||||
|
||||
ToolDefinition:
|
||||
tool_name: str | BuiltinTool
|
||||
description: Optional[str]
|
||||
parameters: Optional[Dict[str, ToolParamDefinition]]
|
||||
|
||||
ToolParamDefinition:
|
||||
param_type: str
|
||||
description: Optional[str]
|
||||
required: Optional[bool]
|
||||
default: Optional[Any]
|
||||
|
||||
|
||||
OpenAI spec -
|
||||
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": tool_name,
|
||||
"description": description,
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
param_name: {
|
||||
"type": param_type,
|
||||
"description": description,
|
||||
"default": default,
|
||||
},
|
||||
...
|
||||
},
|
||||
"required": [param_name, ...],
|
||||
},
|
||||
},
|
||||
}
|
||||
"""
|
||||
out = {
|
||||
"type": "function",
|
||||
"function": {},
|
||||
}
|
||||
function = out["function"]
|
||||
|
||||
if isinstance(tool.tool_name, BuiltinTool):
|
||||
function.update(name=tool.tool_name.value) # TODO(mf): is this sufficient?
|
||||
else:
|
||||
function.update(name=tool.tool_name)
|
||||
|
||||
if tool.description:
|
||||
function.update(description=tool.description)
|
||||
|
||||
if tool.parameters:
|
||||
parameters = {
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
}
|
||||
properties = parameters["properties"]
|
||||
required = []
|
||||
for param_name, param in tool.parameters.items():
|
||||
properties[param_name] = {"type": param.param_type}
|
||||
if param.description:
|
||||
properties[param_name].update(description=param.description)
|
||||
if param.default:
|
||||
properties[param_name].update(default=param.default)
|
||||
if param.required:
|
||||
required.append(param_name)
|
||||
|
||||
if required:
|
||||
parameters.update(required=required)
|
||||
|
||||
function.update(parameters=parameters)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def _convert_message(message: Message | Dict) -> OpenAIChatCompletionMessage:
|
||||
"""
|
||||
Convert a Message to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# users can supply a dict instead of a Message object, we'll
|
||||
# convert it to a Message object and proceed with some type safety.
|
||||
if isinstance(message, dict):
|
||||
if "role" not in message:
|
||||
raise ValueError("role is required in message")
|
||||
if message["role"] == "user":
|
||||
message = UserMessage(**message)
|
||||
elif message["role"] == "assistant":
|
||||
message = CompletionMessage(**message)
|
||||
elif message["role"] == "ipython":
|
||||
message = ToolResponseMessage(**message)
|
||||
elif message["role"] == "system":
|
||||
message = SystemMessage(**message)
|
||||
else:
|
||||
raise ValueError(f"Unsupported message role: {message['role']}")
|
||||
|
||||
out: OpenAIChatCompletionMessage = None
|
||||
if isinstance(message, UserMessage):
|
||||
out = OpenAIChatCompletionUserMessage(
|
||||
role="user",
|
||||
content=message.content, # TODO(mf): handle image content
|
||||
)
|
||||
elif isinstance(message, CompletionMessage):
|
||||
out = OpenAIChatCompletionAssistantMessage(
|
||||
role="assistant",
|
||||
content=message.content,
|
||||
tool_calls=[
|
||||
OpenAIChatCompletionMessageToolCall(
|
||||
id=tool.call_id,
|
||||
function=OpenAIFunction(
|
||||
name=tool.tool_name,
|
||||
arguments=json.dumps(tool.arguments),
|
||||
),
|
||||
type="function",
|
||||
)
|
||||
for tool in message.tool_calls
|
||||
],
|
||||
)
|
||||
elif isinstance(message, ToolResponseMessage):
|
||||
out = OpenAIChatCompletionToolMessage(
|
||||
role="tool",
|
||||
tool_call_id=message.call_id,
|
||||
content=message.content,
|
||||
)
|
||||
elif isinstance(message, SystemMessage):
|
||||
out = OpenAIChatCompletionSystemMessage(
|
||||
role="system",
|
||||
content=message.content,
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported message type: {type(message)}")
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def convert_chat_completion_request(
|
||||
request: ChatCompletionRequest,
|
||||
n: int = 1,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a ChatCompletionRequest to an OpenAI API-compatible dictionary.
|
||||
"""
|
||||
# model -> model
|
||||
# messages -> messages
|
||||
# sampling_params TODO(mattf): review strategy
|
||||
# strategy=greedy -> nvext.top_k = -1, temperature = temperature
|
||||
# strategy=top_p -> nvext.top_k = -1, top_p = top_p
|
||||
# strategy=top_k -> nvext.top_k = top_k
|
||||
# temperature -> temperature
|
||||
# top_p -> top_p
|
||||
# top_k -> nvext.top_k
|
||||
# max_tokens -> max_tokens
|
||||
# repetition_penalty -> nvext.repetition_penalty
|
||||
# response_format -> GrammarResponseFormat TODO(mf)
|
||||
# response_format -> JsonSchemaResponseFormat: response_format = "json_object" & nvext["guided_json"] = json_schema
|
||||
# tools -> tools
|
||||
# tool_choice ("auto", "required") -> tool_choice
|
||||
# tool_prompt_format -> TBD
|
||||
# stream -> stream
|
||||
# logprobs -> logprobs
|
||||
|
||||
if request.response_format and not isinstance(
|
||||
request.response_format, JsonSchemaResponseFormat
|
||||
):
|
||||
raise ValueError(
|
||||
f"Unsupported response format: {request.response_format}. "
|
||||
"Only JsonSchemaResponseFormat is supported."
|
||||
)
|
||||
|
||||
nvext = {}
|
||||
payload: Dict[str, Any] = dict(
|
||||
model=request.model,
|
||||
messages=[_convert_message(message) for message in request.messages],
|
||||
stream=request.stream,
|
||||
n=n,
|
||||
extra_body=dict(nvext=nvext),
|
||||
extra_headers={
|
||||
b"User-Agent": b"llama-stack: nvidia-inference-adapter",
|
||||
},
|
||||
)
|
||||
|
||||
if request.response_format:
|
||||
# server bug - setting guided_json changes the behavior of response_format resulting in an error
|
||||
# payload.update(response_format="json_object")
|
||||
nvext.update(guided_json=request.response_format.json_schema)
|
||||
|
||||
if request.tools:
|
||||
payload.update(
|
||||
tools=[_convert_tooldef_to_openai_tool(tool) for tool in request.tools]
|
||||
)
|
||||
if request.tool_choice:
|
||||
payload.update(
|
||||
tool_choice=request.tool_choice.value
|
||||
) # we cannot include tool_choice w/o tools, server will complain
|
||||
|
||||
if request.logprobs:
|
||||
payload.update(logprobs=True)
|
||||
payload.update(top_logprobs=request.logprobs.top_k)
|
||||
|
||||
if request.sampling_params:
|
||||
nvext.update(repetition_penalty=request.sampling_params.repetition_penalty)
|
||||
|
||||
if request.sampling_params.max_tokens:
|
||||
payload.update(max_tokens=request.sampling_params.max_tokens)
|
||||
|
||||
if request.sampling_params.strategy == "top_p":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(top_p=request.sampling_params.top_p)
|
||||
elif request.sampling_params.strategy == "top_k":
|
||||
if (
|
||||
request.sampling_params.top_k != -1
|
||||
and request.sampling_params.top_k < 1
|
||||
):
|
||||
warnings.warn("top_k must be -1 or >= 1")
|
||||
nvext.update(top_k=request.sampling_params.top_k)
|
||||
elif request.sampling_params.strategy == "greedy":
|
||||
nvext.update(top_k=-1)
|
||||
payload.update(temperature=request.sampling_params.temperature)
|
||||
|
||||
return payload
|
||||
|
||||
|
||||
def _convert_openai_finish_reason(finish_reason: str) -> StopReason:
|
||||
"""
|
||||
Convert an OpenAI chat completion finish_reason to a StopReason.
|
||||
|
||||
finish_reason: Literal["stop", "length", "tool_calls", ...]
|
||||
- stop: model hit a natural stop point or a provided stop sequence
|
||||
- length: maximum number of tokens specified in the request was reached
|
||||
- tool_calls: model called a tool
|
||||
|
||||
->
|
||||
|
||||
class StopReason(Enum):
|
||||
end_of_turn = "end_of_turn"
|
||||
end_of_message = "end_of_message"
|
||||
out_of_tokens = "out_of_tokens"
|
||||
"""
|
||||
|
||||
# TODO(mf): are end_of_turn and end_of_message semantics correct?
|
||||
return {
|
||||
"stop": StopReason.end_of_turn,
|
||||
"length": StopReason.out_of_tokens,
|
||||
"tool_calls": StopReason.end_of_message,
|
||||
}.get(finish_reason, StopReason.end_of_turn)
|
||||
|
||||
|
||||
def _convert_openai_tool_calls(
|
||||
tool_calls: List[OpenAIChatCompletionMessageToolCall],
|
||||
) -> List[ToolCall]:
|
||||
"""
|
||||
Convert an OpenAI ChatCompletionMessageToolCall list into a list of ToolCall.
|
||||
|
||||
OpenAI ChatCompletionMessageToolCall:
|
||||
id: str
|
||||
function: Function
|
||||
type: Literal["function"]
|
||||
|
||||
OpenAI Function:
|
||||
arguments: str
|
||||
name: str
|
||||
|
||||
->
|
||||
|
||||
ToolCall:
|
||||
call_id: str
|
||||
tool_name: str
|
||||
arguments: Dict[str, ...]
|
||||
"""
|
||||
if not tool_calls:
|
||||
return [] # CompletionMessage tool_calls is not optional
|
||||
|
||||
return [
|
||||
ToolCall(
|
||||
call_id=call.id,
|
||||
tool_name=call.function.name,
|
||||
arguments=json.loads(call.function.arguments),
|
||||
)
|
||||
for call in tool_calls
|
||||
]
|
||||
|
||||
|
||||
def _convert_openai_logprobs(
|
||||
logprobs: OpenAIChoiceLogprobs,
|
||||
) -> Optional[List[TokenLogProbs]]:
|
||||
"""
|
||||
Convert an OpenAI ChoiceLogprobs into a list of TokenLogProbs.
|
||||
|
||||
OpenAI ChoiceLogprobs:
|
||||
content: Optional[List[ChatCompletionTokenLogprob]]
|
||||
|
||||
OpenAI ChatCompletionTokenLogprob:
|
||||
token: str
|
||||
logprob: float
|
||||
top_logprobs: List[TopLogprob]
|
||||
|
||||
OpenAI TopLogprob:
|
||||
token: str
|
||||
logprob: float
|
||||
|
||||
->
|
||||
|
||||
TokenLogProbs:
|
||||
logprobs_by_token: Dict[str, float]
|
||||
- token, logprob
|
||||
|
||||
"""
|
||||
if not logprobs:
|
||||
return None
|
||||
|
||||
return [
|
||||
TokenLogProbs(
|
||||
logprobs_by_token={
|
||||
logprobs.token: logprobs.logprob for logprobs in content.top_logprobs
|
||||
}
|
||||
)
|
||||
for content in logprobs.content
|
||||
]
|
||||
|
||||
|
||||
def convert_openai_chat_completion_choice(
|
||||
choice: OpenAIChoice,
|
||||
) -> ChatCompletionResponse:
|
||||
"""
|
||||
Convert an OpenAI Choice into a ChatCompletionResponse.
|
||||
|
||||
OpenAI Choice:
|
||||
message: ChatCompletionMessage
|
||||
finish_reason: str
|
||||
logprobs: Optional[ChoiceLogprobs]
|
||||
|
||||
OpenAI ChatCompletionMessage:
|
||||
role: Literal["assistant"]
|
||||
content: Optional[str]
|
||||
tool_calls: Optional[List[ChatCompletionMessageToolCall]]
|
||||
|
||||
->
|
||||
|
||||
ChatCompletionResponse:
|
||||
completion_message: CompletionMessage
|
||||
logprobs: Optional[List[TokenLogProbs]]
|
||||
|
||||
CompletionMessage:
|
||||
role: Literal["assistant"]
|
||||
content: str | ImageMedia | List[str | ImageMedia]
|
||||
stop_reason: StopReason
|
||||
tool_calls: List[ToolCall]
|
||||
|
||||
class StopReason(Enum):
|
||||
end_of_turn = "end_of_turn"
|
||||
end_of_message = "end_of_message"
|
||||
out_of_tokens = "out_of_tokens"
|
||||
"""
|
||||
assert (
|
||||
hasattr(choice, "message") and choice.message
|
||||
), "error in server response: message not found"
|
||||
assert (
|
||||
hasattr(choice, "finish_reason") and choice.finish_reason
|
||||
), "error in server response: finish_reason not found"
|
||||
|
||||
return ChatCompletionResponse(
|
||||
completion_message=CompletionMessage(
|
||||
content=choice.message.content
|
||||
or "", # CompletionMessage content is not optional
|
||||
stop_reason=_convert_openai_finish_reason(choice.finish_reason),
|
||||
tool_calls=_convert_openai_tool_calls(choice.message.tool_calls),
|
||||
),
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
|
||||
|
||||
async def convert_openai_chat_completion_stream(
|
||||
stream: AsyncStream[OpenAIChatCompletionChunk],
|
||||
) -> AsyncGenerator[ChatCompletionResponseStreamChunk, None]:
|
||||
"""
|
||||
Convert a stream of OpenAI chat completion chunks into a stream
|
||||
of ChatCompletionResponseStreamChunk.
|
||||
|
||||
OpenAI ChatCompletionChunk:
|
||||
choices: List[Choice]
|
||||
|
||||
OpenAI Choice: # different from the non-streamed Choice
|
||||
delta: ChoiceDelta
|
||||
finish_reason: Optional[Literal["stop", "length", "tool_calls", "content_filter", "function_call"]]
|
||||
logprobs: Optional[ChoiceLogprobs]
|
||||
|
||||
OpenAI ChoiceDelta:
|
||||
content: Optional[str]
|
||||
role: Optional[Literal["system", "user", "assistant", "tool"]]
|
||||
tool_calls: Optional[List[ChoiceDeltaToolCall]]
|
||||
|
||||
OpenAI ChoiceDeltaToolCall:
|
||||
index: int
|
||||
id: Optional[str]
|
||||
function: Optional[ChoiceDeltaToolCallFunction]
|
||||
type: Optional[Literal["function"]]
|
||||
|
||||
OpenAI ChoiceDeltaToolCallFunction:
|
||||
name: Optional[str]
|
||||
arguments: Optional[str]
|
||||
|
||||
->
|
||||
|
||||
ChatCompletionResponseStreamChunk:
|
||||
event: ChatCompletionResponseEvent
|
||||
|
||||
ChatCompletionResponseEvent:
|
||||
event_type: ChatCompletionResponseEventType
|
||||
delta: Union[str, ToolCallDelta]
|
||||
logprobs: Optional[List[TokenLogProbs]]
|
||||
stop_reason: Optional[StopReason]
|
||||
|
||||
ChatCompletionResponseEventType:
|
||||
start = "start"
|
||||
progress = "progress"
|
||||
complete = "complete"
|
||||
|
||||
ToolCallDelta:
|
||||
content: Union[str, ToolCall]
|
||||
parse_status: ToolCallParseStatus
|
||||
|
||||
ToolCall:
|
||||
call_id: str
|
||||
tool_name: str
|
||||
arguments: str
|
||||
|
||||
ToolCallParseStatus:
|
||||
started = "started"
|
||||
in_progress = "in_progress"
|
||||
failure = "failure"
|
||||
success = "success"
|
||||
|
||||
TokenLogProbs:
|
||||
logprobs_by_token: Dict[str, float]
|
||||
- token, logprob
|
||||
|
||||
StopReason:
|
||||
end_of_turn = "end_of_turn"
|
||||
end_of_message = "end_of_message"
|
||||
out_of_tokens = "out_of_tokens"
|
||||
"""
|
||||
|
||||
# generate a stream of ChatCompletionResponseEventType: start -> progress -> progress -> ...
|
||||
def _event_type_generator() -> (
|
||||
Generator[ChatCompletionResponseEventType, None, None]
|
||||
):
|
||||
yield ChatCompletionResponseEventType.start
|
||||
while True:
|
||||
yield ChatCompletionResponseEventType.progress
|
||||
|
||||
event_type = _event_type_generator()
|
||||
|
||||
# we implement NIM specific semantics, the main difference from OpenAI
|
||||
# is that tool_calls are always produced as a complete call. there is no
|
||||
# intermediate / partial tool call streamed. because of this, we can
|
||||
# simplify the logic and not concern outselves with parse_status of
|
||||
# started/in_progress/failed. we can always assume success.
|
||||
#
|
||||
# a stream of ChatCompletionResponseStreamChunk consists of
|
||||
# 0. a start event
|
||||
# 1. zero or more progress events
|
||||
# - each progress event has a delta
|
||||
# - each progress event may have a stop_reason
|
||||
# - each progress event may have logprobs
|
||||
# - each progress event may have tool_calls
|
||||
# if a progress event has tool_calls,
|
||||
# it is fully formed and
|
||||
# can be emitted with a parse_status of success
|
||||
# 2. a complete event
|
||||
|
||||
stop_reason = None
|
||||
|
||||
async for chunk in stream:
|
||||
choice = chunk.choices[0] # assuming only one choice per chunk
|
||||
|
||||
# we assume there's only one finish_reason in the stream
|
||||
stop_reason = _convert_openai_finish_reason(choice.finish_reason) or stop_reason
|
||||
|
||||
# if there's a tool call, emit an event for each tool in the list
|
||||
# if tool call and content, emit both separately
|
||||
|
||||
if choice.delta.tool_calls:
|
||||
# the call may have content and a tool call. ChatCompletionResponseEvent
|
||||
# does not support both, so we emit the content first
|
||||
if choice.delta.content:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=next(event_type),
|
||||
delta=choice.delta.content,
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
)
|
||||
|
||||
# it is possible to have parallel tool calls in stream, but
|
||||
# ChatCompletionResponseEvent only supports one per stream
|
||||
if len(choice.delta.tool_calls) > 1:
|
||||
warnings.warn(
|
||||
"multiple tool calls found in a single delta, using the first, ignoring the rest"
|
||||
)
|
||||
|
||||
# NIM only produces fully formed tool calls, so we can assume success
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=next(event_type),
|
||||
delta=ToolCallDelta(
|
||||
content=_convert_openai_tool_calls(choice.delta.tool_calls)[0],
|
||||
parse_status=ToolCallParseStatus.success,
|
||||
),
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
)
|
||||
else:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=next(event_type),
|
||||
delta=choice.delta.content or "", # content is not optional
|
||||
logprobs=_convert_openai_logprobs(choice.logprobs),
|
||||
)
|
||||
)
|
||||
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.complete,
|
||||
delta="",
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
54
llama_stack/providers/remote/inference/nvidia/utils.py
Normal file
54
llama_stack/providers/remote/inference/nvidia/utils.py
Normal file
|
@ -0,0 +1,54 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
import httpx
|
||||
|
||||
from . import NVIDIAConfig
|
||||
|
||||
|
||||
def _is_nvidia_hosted(config: NVIDIAConfig) -> bool:
|
||||
return "integrate.api.nvidia.com" in config.url
|
||||
|
||||
|
||||
async def _get_health(url: str) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Query {url}/v1/health/{live,ready} to check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Returns:
|
||||
Tuple[bool, bool]: (is_live, is_ready)
|
||||
"""
|
||||
async with httpx.AsyncClient() as client:
|
||||
live = await client.get(f"{url}/v1/health/live")
|
||||
ready = await client.get(f"{url}/v1/health/ready")
|
||||
return live.status_code == 200, ready.status_code == 200
|
||||
|
||||
|
||||
async def check_health(config: NVIDIAConfig) -> None:
|
||||
"""
|
||||
Check if the server is running and ready
|
||||
|
||||
Args:
|
||||
url (str): URL of the server
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the server is not running or ready
|
||||
"""
|
||||
if not _is_nvidia_hosted(config):
|
||||
print("Checking NVIDIA NIM health...")
|
||||
try:
|
||||
is_live, is_ready = await _get_health(config.url)
|
||||
if not is_live:
|
||||
raise ConnectionError("NVIDIA NIM is not running")
|
||||
if not is_ready:
|
||||
raise ConnectionError("NVIDIA NIM is not ready")
|
||||
# TODO(mf): should we wait for the server to be ready?
|
||||
except httpx.ConnectError as e:
|
||||
raise ConnectionError(f"Failed to connect to NVIDIA NIM: {e}") from e
|
|
@ -6,6 +6,8 @@
|
|||
|
||||
import pytest
|
||||
|
||||
from ..conftest import get_provider_fixture_overrides
|
||||
|
||||
from .fixtures import INFERENCE_FIXTURES
|
||||
|
||||
|
||||
|
@ -67,11 +69,12 @@ def pytest_generate_tests(metafunc):
|
|||
indirect=True,
|
||||
)
|
||||
if "inference_stack" in metafunc.fixturenames:
|
||||
metafunc.parametrize(
|
||||
"inference_stack",
|
||||
[
|
||||
pytest.param(fixture_name, marks=getattr(pytest.mark, fixture_name))
|
||||
for fixture_name in INFERENCE_FIXTURES
|
||||
],
|
||||
indirect=True,
|
||||
)
|
||||
fixtures = INFERENCE_FIXTURES
|
||||
if filtered_stacks := get_provider_fixture_overrides(
|
||||
metafunc.config,
|
||||
{
|
||||
"inference": INFERENCE_FIXTURES,
|
||||
},
|
||||
):
|
||||
fixtures = [stack.values[0]["inference"] for stack in filtered_stacks]
|
||||
metafunc.parametrize("inference_stack", fixtures, indirect=True)
|
||||
|
|
|
@ -18,6 +18,7 @@ from llama_stack.providers.inline.inference.meta_reference import (
|
|||
from llama_stack.providers.remote.inference.bedrock import BedrockConfig
|
||||
|
||||
from llama_stack.providers.remote.inference.fireworks import FireworksImplConfig
|
||||
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
||||
from llama_stack.providers.remote.inference.ollama import OllamaImplConfig
|
||||
from llama_stack.providers.remote.inference.together import TogetherImplConfig
|
||||
from llama_stack.providers.remote.inference.vllm import VLLMInferenceAdapterConfig
|
||||
|
@ -142,6 +143,19 @@ def inference_bedrock() -> ProviderFixture:
|
|||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def inference_nvidia() -> ProviderFixture:
|
||||
return ProviderFixture(
|
||||
providers=[
|
||||
Provider(
|
||||
provider_id="nvidia",
|
||||
provider_type="remote::nvidia",
|
||||
config=NVIDIAConfig().model_dump(),
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def get_model_short_name(model_name: str) -> str:
|
||||
"""Convert model name to a short test identifier.
|
||||
|
||||
|
@ -175,6 +189,7 @@ INFERENCE_FIXTURES = [
|
|||
"vllm_remote",
|
||||
"remote",
|
||||
"bedrock",
|
||||
"nvidia",
|
||||
]
|
||||
|
||||
|
||||
|
|
|
@ -198,6 +198,7 @@ class TestInference:
|
|||
"remote::fireworks",
|
||||
"remote::tgi",
|
||||
"remote::together",
|
||||
"remote::nvidia",
|
||||
):
|
||||
pytest.skip("Other inference providers don't support structured output yet")
|
||||
|
||||
|
@ -361,6 +362,9 @@ class TestInference:
|
|||
for chunk in grouped[ChatCompletionResponseEventType.progress]
|
||||
)
|
||||
first = grouped[ChatCompletionResponseEventType.progress][0]
|
||||
if not isinstance(
|
||||
first.event.delta.content, ToolCall
|
||||
): # first chunk may contain entire call
|
||||
assert first.event.delta.parse_status == ToolCallParseStatus.started
|
||||
|
||||
last = grouped[ChatCompletionResponseEventType.progress][-1]
|
||||
|
|
|
@ -29,7 +29,6 @@ def build_model_alias(provider_model_id: str, model_descriptor: str) -> ModelAli
|
|||
return ModelAlias(
|
||||
provider_model_id=provider_model_id,
|
||||
aliases=[
|
||||
model_descriptor,
|
||||
get_huggingface_repo(model_descriptor),
|
||||
],
|
||||
llama_model=model_descriptor,
|
||||
|
@ -57,6 +56,10 @@ class ModelRegistryHelper(ModelsProtocolPrivate):
|
|||
self.alias_to_provider_id_map[alias_obj.provider_model_id] = (
|
||||
alias_obj.provider_model_id
|
||||
)
|
||||
# ensure we can go from llama model to provider model id
|
||||
self.alias_to_provider_id_map[alias_obj.llama_model] = (
|
||||
alias_obj.provider_model_id
|
||||
)
|
||||
self.provider_id_to_llama_model_map[alias_obj.provider_model_id] = (
|
||||
alias_obj.llama_model
|
||||
)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue