forked from phoenix-oss/llama-stack-mirror
fix: Fixed an "out of token budget" error when attempting a tool call via remote vLLM provider (#2114)
# What does this PR do? Closes #2113. Closes #1783. Fixes a bug in handling the end of tool execution request stream where no `finish_reason` is provided by the model. ## Test Plan 1. Ran existing unit tests 2. Added a dedicated test verifying correct behavior in this edge case 3. Ran the code snapshot from #2113 [//]: # (## Documentation)
This commit is contained in:
parent
268725868e
commit
5052c3cbf3
2 changed files with 184 additions and 35 deletions
|
@ -158,33 +158,29 @@ def _convert_to_vllm_finish_reason(finish_reason: str) -> StopReason:
|
||||||
}.get(finish_reason, StopReason.end_of_turn)
|
}.get(finish_reason, StopReason.end_of_turn)
|
||||||
|
|
||||||
|
|
||||||
async def _process_vllm_chat_completion_stream_response(
|
def _process_vllm_chat_completion_end_of_stream(
|
||||||
stream: AsyncGenerator[OpenAIChatCompletionChunk, None],
|
finish_reason: str | None,
|
||||||
) -> AsyncGenerator:
|
last_chunk_content: str | None,
|
||||||
event_type = ChatCompletionResponseEventType.start
|
current_event_type: ChatCompletionResponseEventType,
|
||||||
tool_call_buf = UnparseableToolCall()
|
tool_call_buf: UnparseableToolCall,
|
||||||
async for chunk in stream:
|
) -> list[OpenAIChatCompletionChunk]:
|
||||||
if not chunk.choices:
|
chunks = []
|
||||||
log.warning("vLLM failed to generation any completions - check the vLLM server logs for an error.")
|
|
||||||
continue
|
if finish_reason is not None:
|
||||||
choice = chunk.choices[0]
|
stop_reason = _convert_to_vllm_finish_reason(finish_reason)
|
||||||
if choice.delta.tool_calls:
|
else:
|
||||||
tool_call = convert_tool_call(choice.delta.tool_calls[0])
|
stop_reason = StopReason.end_of_message
|
||||||
tool_call_buf.tool_name += str(tool_call.tool_name)
|
|
||||||
tool_call_buf.call_id += tool_call.call_id
|
if tool_call_buf.tool_name:
|
||||||
# TODO: remove str() when dict type for 'arguments' is no longer allowed
|
# at least one tool call request is received
|
||||||
tool_call_buf.arguments += str(tool_call.arguments)
|
|
||||||
if choice.finish_reason:
|
args_str = tool_call_buf.arguments or "{}"
|
||||||
args_str = tool_call_buf.arguments
|
try:
|
||||||
args = None
|
args = json.loads(args_str)
|
||||||
try:
|
chunks.append(
|
||||||
args = {} if not args_str else json.loads(args_str)
|
ChatCompletionResponseStreamChunk(
|
||||||
except Exception as e:
|
|
||||||
log.warning(f"Failed to parse tool call buffer arguments: {args_str} \nError: {e}")
|
|
||||||
if args:
|
|
||||||
yield ChatCompletionResponseStreamChunk(
|
|
||||||
event=ChatCompletionResponseEvent(
|
event=ChatCompletionResponseEvent(
|
||||||
event_type=event_type,
|
event_type=current_event_type,
|
||||||
delta=ToolCallDelta(
|
delta=ToolCallDelta(
|
||||||
tool_call=ToolCall(
|
tool_call=ToolCall(
|
||||||
call_id=tool_call_buf.call_id,
|
call_id=tool_call_buf.call_id,
|
||||||
|
@ -196,8 +192,12 @@ async def _process_vllm_chat_completion_stream_response(
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
elif args_str:
|
)
|
||||||
yield ChatCompletionResponseStreamChunk(
|
except Exception as e:
|
||||||
|
log.warning(f"Failed to parse tool call buffer arguments: {args_str} \nError: {e}")
|
||||||
|
|
||||||
|
chunks.append(
|
||||||
|
ChatCompletionResponseStreamChunk(
|
||||||
event=ChatCompletionResponseEvent(
|
event=ChatCompletionResponseEvent(
|
||||||
event_type=ChatCompletionResponseEventType.progress,
|
event_type=ChatCompletionResponseEventType.progress,
|
||||||
delta=ToolCallDelta(
|
delta=ToolCallDelta(
|
||||||
|
@ -206,14 +206,50 @@ async def _process_vllm_chat_completion_stream_response(
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
yield ChatCompletionResponseStreamChunk(
|
|
||||||
event=ChatCompletionResponseEvent(
|
|
||||||
event_type=ChatCompletionResponseEventType.complete,
|
|
||||||
delta=TextDelta(text=choice.delta.content or ""),
|
|
||||||
logprobs=None,
|
|
||||||
stop_reason=_convert_to_vllm_finish_reason(choice.finish_reason),
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
chunks.append(
|
||||||
|
ChatCompletionResponseStreamChunk(
|
||||||
|
event=ChatCompletionResponseEvent(
|
||||||
|
event_type=ChatCompletionResponseEventType.complete,
|
||||||
|
delta=TextDelta(text=last_chunk_content or ""),
|
||||||
|
logprobs=None,
|
||||||
|
stop_reason=stop_reason,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return chunks
|
||||||
|
|
||||||
|
|
||||||
|
async def _process_vllm_chat_completion_stream_response(
|
||||||
|
stream: AsyncGenerator[OpenAIChatCompletionChunk, None],
|
||||||
|
) -> AsyncGenerator:
|
||||||
|
event_type = ChatCompletionResponseEventType.start
|
||||||
|
tool_call_buf = UnparseableToolCall()
|
||||||
|
end_of_stream_processed = False
|
||||||
|
|
||||||
|
async for chunk in stream:
|
||||||
|
if not chunk.choices:
|
||||||
|
log.warning("vLLM failed to generation any completions - check the vLLM server logs for an error.")
|
||||||
|
return
|
||||||
|
choice = chunk.choices[0]
|
||||||
|
if choice.delta.tool_calls:
|
||||||
|
tool_call = convert_tool_call(choice.delta.tool_calls[0])
|
||||||
|
tool_call_buf.tool_name += str(tool_call.tool_name)
|
||||||
|
tool_call_buf.call_id += tool_call.call_id
|
||||||
|
# TODO: remove str() when dict type for 'arguments' is no longer allowed
|
||||||
|
tool_call_buf.arguments += str(tool_call.arguments)
|
||||||
|
if choice.finish_reason:
|
||||||
|
chunks = _process_vllm_chat_completion_end_of_stream(
|
||||||
|
finish_reason=choice.finish_reason,
|
||||||
|
last_chunk_content=choice.delta.content,
|
||||||
|
current_event_type=event_type,
|
||||||
|
tool_call_buf=tool_call_buf,
|
||||||
|
)
|
||||||
|
for c in chunks:
|
||||||
|
yield c
|
||||||
|
end_of_stream_processed = True
|
||||||
elif not choice.delta.tool_calls:
|
elif not choice.delta.tool_calls:
|
||||||
yield ChatCompletionResponseStreamChunk(
|
yield ChatCompletionResponseStreamChunk(
|
||||||
event=ChatCompletionResponseEvent(
|
event=ChatCompletionResponseEvent(
|
||||||
|
@ -224,6 +260,17 @@ async def _process_vllm_chat_completion_stream_response(
|
||||||
)
|
)
|
||||||
event_type = ChatCompletionResponseEventType.progress
|
event_type = ChatCompletionResponseEventType.progress
|
||||||
|
|
||||||
|
if end_of_stream_processed:
|
||||||
|
return
|
||||||
|
|
||||||
|
# the stream ended without a chunk containing finish_reason - we have to generate the
|
||||||
|
# respective completion chunks manually
|
||||||
|
chunks = _process_vllm_chat_completion_end_of_stream(
|
||||||
|
finish_reason=None, last_chunk_content=None, current_event_type=event_type, tool_call_buf=tool_call_buf
|
||||||
|
)
|
||||||
|
for c in chunks:
|
||||||
|
yield c
|
||||||
|
|
||||||
|
|
||||||
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
||||||
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
||||||
|
|
|
@ -374,3 +374,105 @@ async def test_process_vllm_chat_completion_stream_response_tool_call_args_last_
|
||||||
assert chunks[-2].event.delta.type == "tool_call"
|
assert chunks[-2].event.delta.type == "tool_call"
|
||||||
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
||||||
assert chunks[-2].event.delta.tool_call.arguments == mock_tool_arguments
|
assert chunks[-2].event.delta.tool_call.arguments == mock_tool_arguments
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_process_vllm_chat_completion_stream_response_no_finish_reason():
|
||||||
|
"""
|
||||||
|
Tests the edge case where the model requests a tool call and stays idle without explicitly providing the
|
||||||
|
finish reason.
|
||||||
|
We want to make sure that this case is recognized and handled correctly, i.e., as a valid end of message.
|
||||||
|
"""
|
||||||
|
|
||||||
|
mock_tool_name = "mock_tool"
|
||||||
|
mock_tool_arguments = {"arg1": 0, "arg2": 100}
|
||||||
|
mock_tool_arguments_str = '"{\\"arg1\\": 0, \\"arg2\\": 100}"'
|
||||||
|
|
||||||
|
async def mock_stream():
|
||||||
|
mock_chunks = [
|
||||||
|
OpenAIChatCompletionChunk(
|
||||||
|
id="chunk-1",
|
||||||
|
created=1,
|
||||||
|
model="foo",
|
||||||
|
object="chat.completion.chunk",
|
||||||
|
choices=[
|
||||||
|
{
|
||||||
|
"delta": {
|
||||||
|
"content": None,
|
||||||
|
"tool_calls": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"id": "mock_id",
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": mock_tool_name,
|
||||||
|
"arguments": mock_tool_arguments_str,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
"finish_reason": None,
|
||||||
|
"logprobs": None,
|
||||||
|
"index": 0,
|
||||||
|
}
|
||||||
|
],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
for chunk in mock_chunks:
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||||
|
assert len(chunks) == 2
|
||||||
|
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
|
||||||
|
assert chunks[-2].event.delta.type == "tool_call"
|
||||||
|
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
||||||
|
assert chunks[-2].event.delta.tool_call.arguments == mock_tool_arguments
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_process_vllm_chat_completion_stream_response_tool_without_args():
|
||||||
|
"""
|
||||||
|
Tests the edge case where no arguments are provided for the tool call.
|
||||||
|
Tool calls with no arguments should be treated as regular tool calls, which was not the case until now.
|
||||||
|
"""
|
||||||
|
mock_tool_name = "mock_tool"
|
||||||
|
|
||||||
|
async def mock_stream():
|
||||||
|
mock_chunks = [
|
||||||
|
OpenAIChatCompletionChunk(
|
||||||
|
id="chunk-1",
|
||||||
|
created=1,
|
||||||
|
model="foo",
|
||||||
|
object="chat.completion.chunk",
|
||||||
|
choices=[
|
||||||
|
{
|
||||||
|
"delta": {
|
||||||
|
"content": None,
|
||||||
|
"tool_calls": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"id": "mock_id",
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": mock_tool_name,
|
||||||
|
"arguments": "",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
"finish_reason": None,
|
||||||
|
"logprobs": None,
|
||||||
|
"index": 0,
|
||||||
|
}
|
||||||
|
],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
for chunk in mock_chunks:
|
||||||
|
yield chunk
|
||||||
|
|
||||||
|
chunks = [chunk async for chunk in _process_vllm_chat_completion_stream_response(mock_stream())]
|
||||||
|
assert len(chunks) == 2
|
||||||
|
assert chunks[-1].event.event_type == ChatCompletionResponseEventType.complete
|
||||||
|
assert chunks[-2].event.delta.type == "tool_call"
|
||||||
|
assert chunks[-2].event.delta.tool_call.tool_name == mock_tool_name
|
||||||
|
assert chunks[-2].event.delta.tool_call.arguments == {}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue