feat: implement get chat completions APIs (#2200)

# What does this PR do?
* Provide sqlite implementation of the APIs introduced in
https://github.com/meta-llama/llama-stack/pull/2145.
* Introduced a SqlStore API: llama_stack/providers/utils/sqlstore/api.py
and the first Sqlite implementation
* Pagination support will be added in a future PR.

## Test Plan
Unit test on sql store:
<img width="1005" alt="image"
src="https://github.com/user-attachments/assets/9b8b7ec8-632b-4667-8127-5583426b2e29"
/>


Integration test:
```
INFERENCE_MODEL="llama3.2:3b-instruct-fp16" llama stack build --template ollama --image-type conda --run
```
```
LLAMA_STACK_CONFIG=http://localhost:5001 INFERENCE_MODEL="llama3.2:3b-instruct-fp16" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-fp16" -k 'inference_store and openai'
```
This commit is contained in:
ehhuang 2025-05-21 22:21:52 -07:00 committed by GitHub
parent 633bb9c5b3
commit 549812f51e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
71 changed files with 1111 additions and 10 deletions

View file

@ -222,3 +222,105 @@ def test_openai_chat_completion_streaming(compat_client, client_with_models, tex
streamed_content.append(chunk.choices[0].delta.content.lower().strip())
assert len(streamed_content) > 0
assert expected.lower() in "".join(streamed_content)
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
def test_inference_store(openai_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = openai_client
# make a chat completion
message = "Hello, world!"
response = client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": message,
}
],
stream=stream,
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None:
response_id = chunk.id
content += chunk.choices[0].delta.content
else:
response_id = response.id
content = response.choices[0].message.content
responses = client.chat.completions.list()
assert response_id in [r.id for r in responses.data]
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.input_messages[0]["content"] == message
assert retrieved_response.choices[0].message.content == content
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
def test_inference_store_tool_calls(openai_client, client_with_models, text_model_id, stream):
skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id)
client = openai_client
# make a chat completion
message = "What's the weather in Tokyo? Use the get_weather function to get the weather."
response = client.chat.completions.create(
model=text_model_id,
messages=[
{
"role": "user",
"content": message,
}
],
stream=stream,
tools=[
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to get the weather for"},
},
},
},
}
],
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None:
response_id = chunk.id
content += chunk.choices[0].delta.content
else:
response_id = response.id
content = response.choices[0].message.content
responses = client.chat.completions.list()
assert response_id in [r.id for r in responses.data]
retrieved_response = client.chat.completions.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.input_messages[0]["content"] == message
assert retrieved_response.choices[0].message.tool_calls[0].function.name == "get_weather"
assert retrieved_response.choices[0].message.tool_calls[0].function.arguments == '{"city":"Tokyo"}'

View file

@ -0,0 +1,62 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from tempfile import TemporaryDirectory
import pytest
from llama_stack.providers.utils.sqlstore.api import ColumnType
from llama_stack.providers.utils.sqlstore.sqlite.sqlite import SqliteSqlStoreImpl
from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig
@pytest.mark.asyncio
async def test_sqlite_sqlstore():
with TemporaryDirectory() as tmp_dir:
db_name = "test.db"
sqlstore = SqliteSqlStoreImpl(
SqliteSqlStoreConfig(
db_path=tmp_dir + "/" + db_name,
)
)
await sqlstore.create_table(
table="test",
schema={
"id": ColumnType.INTEGER,
"name": ColumnType.STRING,
},
)
await sqlstore.insert("test", {"id": 1, "name": "test"})
await sqlstore.insert("test", {"id": 12, "name": "test12"})
rows = await sqlstore.fetch_all("test")
assert rows == [{"id": 1, "name": "test"}, {"id": 12, "name": "test12"}]
row = await sqlstore.fetch_one("test", {"id": 1})
assert row == {"id": 1, "name": "test"}
row = await sqlstore.fetch_one("test", {"name": "test12"})
assert row == {"id": 12, "name": "test12"}
# order by
rows = await sqlstore.fetch_all("test", order_by=[("id", "asc")])
assert rows == [{"id": 1, "name": "test"}, {"id": 12, "name": "test12"}]
rows = await sqlstore.fetch_all("test", order_by=[("id", "desc")])
assert rows == [{"id": 12, "name": "test12"}, {"id": 1, "name": "test"}]
# limit
rows = await sqlstore.fetch_all("test", limit=1)
assert rows == [{"id": 1, "name": "test"}]
# update
await sqlstore.update("test", {"name": "test123"}, {"id": 1})
row = await sqlstore.fetch_one("test", {"id": 1})
assert row == {"id": 1, "name": "test123"}
# delete
await sqlstore.delete("test", {"id": 1})
rows = await sqlstore.fetch_all("test")
assert rows == [{"id": 12, "name": "test12"}]